Search results

1 – 10 of 133
Article
Publication date: 13 July 2021

Abdulsamed Tabak

The purpose of this paper is to improve transient response and dynamic performance of automatic voltage regulator (AVR).

Abstract

Purpose

The purpose of this paper is to improve transient response and dynamic performance of automatic voltage regulator (AVR).

Design/methodology/approach

This paper proposes a novel fractional order proportional–integral–derivative plus derivative (PIλDµDµ2) controller called FOPIDD for AVR system. The FOPIDD controller has seven optimization parameters and the equilibrium optimizer algorithm is used for tuning of controller parameters. The utilized objective function is widely preferred in AVR systems and consists of transient response characteristics.

Findings

In this study, results of AVR system controlled by FOPIDD is compared with results of proportional–integral–derivative (PID), proportional–integral–derivative acceleration, PID plus second order derivative and fractional order PID controllers. FOPIDD outperforms compared controllers in terms of transient response criteria such as settling time, rise time and overshoot. Then, the frequency domain analysis is performed for the AVR system with FOPIDD controller, and the results are found satisfactory. In addition, robustness test is realized for evaluating performance of FOPIDD controller in perturbed system parameters. In robustness test, FOPIDD controller shows superior control performance.

Originality/value

The FOPIDD controller is introduced for the first time to improve the control performance of the AVR system. The proposed FOPIDD controller has shown superior performance on AVR systems because of having seven optimization parameters and being fractional order based.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 October 2021

Zafer Bingul and Oguzhan Karahan

The purpose of this paper is to address a fractional order fuzzy PID (FOFPID) control approach for solving the problem of enhancing high precision tracking performance and…

Abstract

Purpose

The purpose of this paper is to address a fractional order fuzzy PID (FOFPID) control approach for solving the problem of enhancing high precision tracking performance and robustness against to different reference trajectories of a 6-DOF Stewart Platform (SP) in joint space.

Design/methodology/approach

For the optimal design of the proposed control approach, tuning of the controller parameters including membership functions and input-output scaling factors along with the fractional order rate of error and fractional order integral of control signal is tuned with off-line by using particle swarm optimization (PSO) algorithm. For achieving this off-line optimization in the simulation environment, very accurate dynamic model of SP which has more complicated dynamical characteristics is required. Therefore, the coupling dynamic model of multi-rigid-body system is developed by Lagrange-Euler approach. For completeness, the mathematical model of the actuators is established and integrated with the dynamic model of SP mechanical system to state electromechanical coupling dynamic model. To study the validness of the proposed FOFPID controller, using this accurate dynamic model of the SP, other published control approaches such as the PID control, FOPID control and fuzzy PID control are also optimized with PSO in simulation environment. To compare trajectory tracking performance and effectiveness of the tuned controllers, the real time validation trajectory tracking experiments are conducted using the experimental setup of the SP by applying the optimum parameters of the controllers. The credibility of the results obtained with the controllers tuned in simulation environment is examined using statistical analysis.

Findings

The experimental results clearly demonstrate that the proposed optimal FOFPID controller can improve the control performance and reduce reference trajectory tracking errors of the SP. Also, the proposed PSO optimized FOFPID control strategy outperforms other control schemes in terms of the different difficulty levels of the given trajectories.

Originality/value

To the best of the authors’ knowledge, such a motion controller incorporating the fractional order approach to the fuzzy is first time applied in trajectory tracking control of SP.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 April 2021

Thomas George and V. Ganesan

The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal…

Abstract

Purpose

The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal design known as advanced cuttlefish optimizer and random decision forest that is combined performance of random decision forest algorithm (RDFA) and advanced cuttlefish optimizer (ACFO).

Design/methodology/approach

The proposed ACFO uses the concept of crossover and mutation operator depend on position upgrading to enhance its search behavior, calculational speed as well as convergence profile at basic cuttlefish optimizer.

Findings

Fractional order proportional-integrator-derivative (FOPID) controller, apart from as tuning parameters (kp, ki and kd) it consists of two extra tuning parameters λ and µ. In established technology, the increase of FOPID controller is adjusted to reach needed responses that demonstrated using RDFA theory as well as RDF weight matrices is probable to the help of the ACFO method. The uniqueness of the established method is to decrease the failure of the FOPID controller at greater order time delay method with the help of controller maximize restrictions. The objective of the established method is selected to consider parameters set point as well as achieved parameters of time-delay system.

Originality/value

In the established technique used to evade large order delays as well as reliability restrictions such as small excesses, time resolution, as well as fixed condition defect. These methods is implemented at MATLAB/Simulink platform as well as outcomes compared to various existing methods such as Ziegler-Nichols fit, curve fit, Wang method, regression and invasive weed optimization and linear-quadratic regression method.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 August 2021

Hasan Saribas and Sinem Kahvecioglu

This study aims to compare the performance of the conventional and fractional order proportional-integral-derivative (PID and FOPID) controllers tuned with a particle swarm…

262

Abstract

Purpose

This study aims to compare the performance of the conventional and fractional order proportional-integral-derivative (PID and FOPID) controllers tuned with a particle swarm optimization (PSO) and genetic algorithm (GA) for quadrotor control.

Design/methodology/approach

In this study, the gains of the controllers were tuned using PSO and GA, which are included in the heuristic optimization methods. The tuning processes of the controller’s gains were formulated as optimization problems. While generating the objective functions (cost functions), four different decision criteria were considered separately: integrated summation error (ISE), integrated absolute error, integrated time absolute error and integrated time summation error (ITSE).

Findings

According to the simulation results and comparison tables that were created, FOPID controllers tuned with PSO performed better performances than PID controllers. In addition, the ITSE criterion returned better results in control of all axes except for altitude control when compared to the other cost functions. In the control of altitude with the PID controller, the ISE criterion showed better performance.

Originality/value

While a conventional PID controller has three parameters (Kp, Ki, Kd) that need to be tuned, FOPID controllers have two additional parameters (µ). The inclusion of these two extra parameters means more flexibility in the controller design but much more complexity for parameter tuning. This study reveals the potential and effectiveness of PSO and GA in tuning the controller despite the increased number of parameters and complexity.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 June 2021

N. Kanagaraj and Vishwa Nath Jha

This paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate…

Abstract

Purpose

This paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate its performance for a class of a second-order plant model under different operating conditions. The effectiveness of the proposed controller is compared with the classical controllers.

Design/methodology/approach

The fractional factor related to the integral term of the standard FO[PI]λDµ controller is applied as a common fractional factor term for the proportional plus integral coefficients in the proposed controller structure. The controller design is developed using the regular closed-loop system design specifications such as gain crossover frequency, phase margin, robustness to gain change and two more specifications, namely, noise reduction and disturbance elimination functions.

Findings

The study results of the designed controller using matrix laboratory software are analyzed and compared with an integer order PID and a classical FOPIλDµ controller, the proposed FO[PI]λDµ controller exhibit a high degree of performance in terms of settling time, fast response and no overshoot.

Originality/value

This paper proposes a methodology for the FO[PI]λDµ controller design for a second-order plant model using the closed-loop system design specifications. The effectiveness of the proposed control scheme is demonstrated under different operating conditions such as external load disturbances and input parameter change.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 2023

Kaixin Li, Ye He, Kuan Li and Chengguo Liu

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this…

Abstract

Purpose

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this research is to propose an adaptive fractional-order admittance control scheme to realize a robot–environment contact with high accuracy, small overshoot and fast response.

Design/methodology/approach

Fractional calculus is introduced to reconstruct the classical admittance model in this control scheme, which can more accurately describe the complex physical relationship between position and force in the interaction process of the robot–environment. In this control scheme, the pre-PID controller and fuzzy controller are adopted to improve the system force tracking performance in highly dynamic unknown environments, and the fuzzy controller is used to improve the trajectory, transient and steady-state response by adjusting the pre-PID integration gain online. Furthermore, the stability and robustness of this control algorithm are theoretically and experimentally demonstrated.

Findings

The excellent force tracking performance of the proposed control algorithm is verified by constructing highly dynamic unstructured environments through simulations and experiments. In simulations and experiments, the proposed control algorithm shows satisfactory force tracking performance with the advantages of fast response speed, little overshoot and strong robustness.

Practical implications

The control scheme is practical and simple in the actual industrial and medical scenarios, which requires accurate force control by the robot.

Originality/value

A new fractional-order admittance controller is proposed and verified by experiments in this research, which achieves excellent force tracking performance in dynamic unknown environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 February 2021

Himanshukumar R. Patel, Sejal K. Raval and Vipul A. Shah

The purpose of this article is about the design of controllers for conical two-tank noninteracting level (CTTNL) system in simulation. Local linearization around the equilibrium…

Abstract

Purpose

The purpose of this article is about the design of controllers for conical two-tank noninteracting level (CTTNL) system in simulation. Local linearization around the equilibrium point has been done for the nonlinear CTTNL system to obtain a linearized model transfer function.

Design/methodology/approach

This article deals with the design of novel optimal fractional-order tilt-integral-derivative (TID) controller using type-1 fuzzy set for the CTTNL prototype system. In this study, type-1 fuzzy TID controller parameters have been optimized through genetic algorithm (GA) and those set of values have been employed for the design of proportional-integral-derivative (PID) controller.

Findings

A performance comparison between FTID and PID controller is then investigated. The analysis shows the superiority of FTID controller over PID controller in terms of integral absolute error (IAE), integral square error (ISE), integral of time multiplied absolute error (ITAE) and integral of time multiplied squared error (ITSE) integral errors. The transient and steady state performance of the FTID controller are superior as compared to conventional PID controller. In future, the FTID controller fault-tolerance capability tested on CTTNL system subject to actuator and system component (leak) faults. The detailed study of robustness in presence of model uncertainties will be incorporated as a scope of further research.

Originality/value

A performance comparison between FTID and PID controller is then investigated. The analysis shows the superiority of FTID controller over PID controller in terms of IAE, ISE, ITAE and ITSE integral errors. Additionally, fault-tolerant performance of the proposed controller evaluated with fault-recovery time (Frt) parameter. The transient and steady state performance of the FTID controller are superior as compared to conventional PID controller.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 May 2020

Jailsingh Bhookya and Ravi Kumar Jatoth

This paper aims to get the optimal controller parameters of fractional order proportional integral derivative (FOPID)/proportional integral derivative (PID) i.e. Kp, Ki, Kd, λ and…

Abstract

Purpose

This paper aims to get the optimal controller parameters of fractional order proportional integral derivative (FOPID)/proportional integral derivative (PID) i.e. Kp, Ki, Kd, λ and µ for designing controller in automatic voltage regulator (AVR) system.

Design/methodology/approach

A novel method is proposed to get the optimal controller parameters for designing controller in AVR system using improved Jaya algorithm (IJA). The time domain objective and regular integral error objectives are used to design the controller to estimate the performance of the AVR system based on optimal tuning FOPID/PID controller.

Findings

The proposed method captures time domain objective of the FOPID/PID controller design and demonstrates effective transient response and better control action. The efficient tuning of FOPID controller results in high superiority of control efforts.

Practical implications

The simulations of IJA-based FOPID/PID controller design method are performed in MatLab tool and compared with several methods in the recent state of the art and the same are observed to be robust for the AVR system.

Originality/value

The developed optimal FOPID/PID controller tuning using IJA optimization method is totally a new approach for the AVR system in the literature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 July 2020

Sonalika Mishra, Suchismita Patel, Ramesh Chandra Prusty and Sidhartha Panda

This paper aims to implement a maiden methodology for load frequency control of an AC multi micro-grid (MG) by using hybrid fractional order fuzzy PID (FOFPID) controller and…

Abstract

Purpose

This paper aims to implement a maiden methodology for load frequency control of an AC multi micro-grid (MG) by using hybrid fractional order fuzzy PID (FOFPID) controller and linear quadratic Gaussian (LQG).

Design/methodology/approach

The multi MG system considered is consisting of photovoltaic, wind turbine and a synchronous generator. Different energy storage devices i.e. battery energy storage system and flywheel energy storage system are also integrated to the system. The renewable energy sources suffer from uncertainty and fluctuation from their nominal values, which results in fluctuation of system frequency. Inspired by this difficulty in MG control, this research paper proposes a hybridized FOFPID and LQG controller under random and stochastic environments. Again to confer viability of proposed controller its performances are compared with PID, fuzzy PID and fuzzy PID-LQG controllers. A comparative study among all implemented techniques i.e. proposed multi-verse optimization (MVO) algorithm, particle swarm optimization and genetic algorithm has been done to justify the supremacy of MVO algorithm. To check the robustness of the controller sensitivity analysis is done.

Findings

The merged concept of fractional calculus and state feedback theory is found to be efficient. The designed controller is found to be capable of rejecting the effect of disturbances present in the system.

Originality/value

From the study, the authors observed that the proposed hybrid FOPID and LQG controller is robust hence, there is no need to reset the controller parameters with a large change in network parameters.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 February 2021

Himanshukumar R. Patel and Vipul A. Shah

The two-tank level control system is one of the real-world's second-order system (SOS) widely used as the process control in industries. It is normally operated under the…

Abstract

Purpose

The two-tank level control system is one of the real-world's second-order system (SOS) widely used as the process control in industries. It is normally operated under the Proportional integral and derivative (PID) feedback control loop. The conventional PID controller performance degrades significantly in the existence of modeling uncertainty, faults and process disturbances. To overcome these limitations, the paper suggests an interval type-2 fuzzy logic based Tilt-Integral-Derivative Controller (IT2TID) which is modified structure of PID controller.

Design/methodology/approach

In this paper, an optimization IT2TID controller design for the conical, noninteracting level control system is presented. Regarding to modern optimization context, the flower pollination algorithm (FPA), among the most coherent population-based metaheuristic optimization techniques is applied to search for the appropriate IT2FTID's and IT2FPID's parameters. The proposed FPA-based IT2FTID/IT2FPID design framework is considered as the constrained optimization problem. System responses obtained by the IT2FTID controller designed by the FPA will be differentiated with those acquired by the IT2FPID controller also designed by the FPA.

Findings

As the results, it was found that the IT2FTID can provide the very satisfactory tracking and regulating responses of the conical two-tank noninteracting level control system superior as compared to IT2FPID significantly under the actuator and system component faults. Additionally, statistical Z-test carried out for both the controllers and an effectiveness of the proposed IT2FTID controller is proven as compared to IT2FPID and existing passive fault tolerant controller in recent literature.

Originality/value

Application of new metaheuristic algorithm to optimize interval type-2 fractional order TID controller for nonlinear level control system with two type of faults. Also, proposed method will compare with other method and statistical analysis will be presented.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 133