Search results

11 – 20 of 70
Article
Publication date: 31 January 2020

Mahdi Shayanmehr and Omid Basiri

In this paper, the important aspects of vibration analysis of carbon nanotubes (CNTs) as nano-resonators are studied. This study has covered the important nonlinear phenomena such…

Abstract

Purpose

In this paper, the important aspects of vibration analysis of carbon nanotubes (CNTs) as nano-resonators are studied. This study has covered the important nonlinear phenomena such as jump super-harmonic and chaotic behavior. CNT is modeled by using the modified nonlocal theory (MNT).

Design/methodology/approach

In previous research studies, the effects of CNT’s rotary inertia, stiffness and shear modulus of the medium were neglected. So by considering these terms in MNT, a comprehensive model of vibrational behavior of carbon nanotube as a nanosensor is presented. The nanotube is modeled as a nonlocal nonlinear beam. The first eigenmode of an undamped simply supported beam is used to extract the nonlinear equation of CNT. Harmonic balance method is used to solve the equation, while to study its super-harmonic behavior, higher-order harmonic terms were used.

Findings

In light of frequency response equation, jump phenomenon and chaotic behavior of the nanotube with respect to the amplitude of excitation are investigated. Also in each section of the study, the effects of elastic medium and nonlocal parameters on the vibration behavior of nanotube are investigated. Furthermore, parts of the results in linear and nonlinear cases were compared with results of other references.

Originality/value

The present modification of the nonlocal theory is so important and useful for accurate investigation of the vibrational behavior of nano structures such as a nano-resonator.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 December 2021

Sunil Kumar, R.P. Chauhan, Shaher Momani and Samir Hadid

This paper aims to study the complex behavior of a dynamical system using fractional and fractal-fractional (FF) derivative operators. The non-classical derivatives are extremely…

Abstract

Purpose

This paper aims to study the complex behavior of a dynamical system using fractional and fractal-fractional (FF) derivative operators. The non-classical derivatives are extremely useful for investigating the hidden behavior of the systems. The Atangana–Baleanu (AB) and Caputo–Fabrizio (CF) derivatives are considered for the fractional structure of the model. Further, to add more complexity, the authors have taken the system with a CF fractal-fractional derivative having an exponential kernel. The active control technique is also considered for chaos control.

Design/methodology/approach

The systems under consideration are solved numerically. The authors show the Adams-type predictor-corrector scheme for the AB model and the Adams–Bashforth scheme for the CF model. The convergence and stability results are given for the numerical scheme. A numerical scheme for the FF model is also presented. Further, an active control scheme is used for chaos control and synchronization of the systems.

Findings

Simulations of the obtained solutions are displayed via graphics. The proposed system exhibits a very complex phenomenon known as chaos. The importance of the fractional and fractal order can be seen in the presented graphics. Furthermore, chaos control and synchronization between two identical fractional-order systems are achieved.

Originality/value

This paper mentioned the complex behavior of a dynamical system with fractional and fractal-fractional operators. Chaos control and synchronization using active control are also described.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 July 2020

Amit Prakash and Vijay Verma

The purpose of this paper is to apply an efficient hybrid computational numerical technique, namely, q-homotopy analysis Sumudu transform method (q-HASTM) and residual power…

Abstract

Purpose

The purpose of this paper is to apply an efficient hybrid computational numerical technique, namely, q-homotopy analysis Sumudu transform method (q-HASTM) and residual power series method (RPSM) for finding the analytical solution of the non-linear time-fractional Hirota–Satsuma coupled KdV (HS-cKdV) equations.

Design/methodology/approach

The proposed technique q-HASTM is the graceful amalgamations of q-homotopy analysis method with Sumudu transform via Caputo fractional derivative, whereas RPSM depend on generalized formula of Taylors series along with residual error function.

Findings

To illustrate and validate the efficiency of the proposed technique, the authors analyzed the projected non-linear coupled equations in terms of fractional order. Moreover, the physical behavior of the attained solution has been captured in terms of plots and by examining the L2 and L error norm for diverse value of fractional order.

Originality/value

The authors implemented two technique, q-HASTM and RPSM to obtain the solution of non-linear time-fractional HS-cKdV equations. The obtained results and comparison between q-HASTM and RPSM, shows that the proposed methods provide the solution of non-linear models in form of a convergent series, without using any restrictive assumption. Also, the proposed algorithm is easy to implement and highly efficient to analyze the behavior of non-linear coupled fractional differential equation arisen in various area of science and engineering.

Article
Publication date: 2 June 2023

Dhabaleswar Mohapatra and Snehashish Chakraverty

Investigation of the smoking model is important as it has a direct effect on human health. This paper focuses on the numerical analysis of the fractional order giving up smoking…

Abstract

Purpose

Investigation of the smoking model is important as it has a direct effect on human health. This paper focuses on the numerical analysis of the fractional order giving up smoking model. Nonetheless, due to observational or experimental errors, or any other circumstance, it may contain some incomplete information. Fuzzy sets can be used to deal with uncertainty. Yet, there may be some inconsistency in the membership as well. As a result, the primary goal of this proposed work is to numerically solve the model in a type-2 fuzzy environment.

Design/methodology/approach

Triangular perfect quasi type-2 fuzzy numbers (TPQT2FNs) are used to deal with the uncertainty in the model. In this work, concepts of r2-cut at r1-plane are used to model the problem's uncertain parameter. The Legendre wavelet method (LWM) is then utilised to solve the giving up smoking model in a type-2 fuzzy environment.

Findings

LWM has been effectively employed in conjunction with the r2-cut at r1-plane notion of type-2 fuzzy sets to solve the model. The LWM has the advantage of converting the non-linear fractional order model into a set of non-linear algebraic equations. LWM scheme solutions are found to be well agreed with RK4 scheme solutions. The existence and uniqueness of the model's solution have also been demonstrated.

Originality/value

To deal with the uncertainty, type-2 fuzzy numbers are used. The use of LWM in a type-2 fuzzy uncertain environment to achieve the model's required solutions is quite fascinating, and this is the key focus of this work.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 September 2022

Jyoti Verma, Navneet Kumar Lamba and K.C. Deshmukh

The purpose of the paper is to prepare the hygrothermal model with fraction order theory in a mathematical aspect.

37

Abstract

Purpose

The purpose of the paper is to prepare the hygrothermal model with fraction order theory in a mathematical aspect.

Design/methodology/approach

In this study, linear hygrothermoelastic theory is adopted to analyze and discuss the memory effect in a finite length hollow cylinder subjected to hygrothermal loading.

Findings

Analytical solutions of temperature, moisture and stresses are obtained in this study by using the decoupling technique and the method of Integral transform.

Originality/value

The paper deals with the original work based on hygrothermal response in hollow cylinder by theory of uncoupled-coupled heat and moisture.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 May 2019

A. Al-khedhairi

Fractional calculus provides powerful tool to build more realistic and accurate mathematical models in economic field. This paper aims to explore a proposed fractional-order…

150

Abstract

Purpose

Fractional calculus provides powerful tool to build more realistic and accurate mathematical models in economic field. This paper aims to explore a proposed fractional-order differentiated Cournot duopoly game and its discretized game.

Design/methodology/approach

Conditions for existence and uniqueness of the proposed game’s solution are derived. The existence of Nash equilibrium point and its local and global stability are obtained. Furthermore, local stability analysis of the discretized game is investigated. The effects of fractional-order on game’s dynamics are examined, along with other parameters of the game, via the 2D bifurcation diagrams in planes of system’s parameters are acquired.

Findings

Theoretical and numerical simulation results demonstrate rich variety of interesting dynamical behaviors such as period-doubling and Neimark–Sacker bifurcations, attractors’ crises in addition to chaotic attractors. The results demonstrated that the stability Nash equilibrium point of the game can be lost by period doubling or Neimark–Sacker bifurcations.

Practical implications

Oligopoly games are pivotal in the mathematical modeling of some substantial economic areas such as industrial organization, airline, banking, telecommunication companies, international trade and also macroeconomic analysis of business cycles, innovation and growth.

Originality/value

Although the Cournot game and its variants have attracted great interest among mathematicians and economists since the time of its proposition till present, memory effects in continuous-time and discrete-time Cournot duopoly game have not been addressed yet. To the best of author’s knowledge, this can be considered as the first attempt to investigate this problem of fractional-order differentiated Cournot duopoly game. In addition, studying more realistic models of Cournot oligopoly games plays a pivotal role in the mathematical investigation and better understanding of some substantial economic areas such as industrial organization, airline, banking, telecommunication companies, international trade and also in macroeconomic analysis of business cycles, innovation and growth.

Details

Engineering Computations, vol. 36 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 February 2014

Bo Tang, Xuemin Wang, Leilei Wei and Xindong Zhang

This paper aims to apply fractional variational iteration method using He's polynomials (FVIMHP) to obtain exact solutions for variable-coefficient fractional heat-like and…

Abstract

Purpose

This paper aims to apply fractional variational iteration method using He's polynomials (FVIMHP) to obtain exact solutions for variable-coefficient fractional heat-like and wave-like equations with fractional order initial and boundary conditions.

Design/methodology/approach

The approach is based on FVIMHP. The authors choose as some examples to illustrate the validity and the advantages of the method.

Findings

The results reveal that the FVIMHP method provides a very effective, convenient and powerful mathematical tool for solving fractional differential equations.

Originality/value

The variable-coefficient fractional heat-like and wave-like equations with fractional order initial and boundary conditions are solved first. Illustrative examples are included to demonstrate the validity and applicability of the method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 August 2023

Tasmia Roshan, Surath Ghosh, Ram P. Chauhan and Sunil Kumar

The fractional order HIV model has an important role in biological science. To study the HIV model in a better way, the model is presented with the help of Atangana- Baleanu…

Abstract

Purpose

The fractional order HIV model has an important role in biological science. To study the HIV model in a better way, the model is presented with the help of Atangana- Baleanu operator which is in Caputo sense. Also, the characteristics of the solutions are described briefly with the help of the advance numerical techniques for the different values of fractional order derivatives. This paper aims to discuss the aforementioned objectives.

Design/methodology/approach

In this work, Adams-Bashforth method and Euler method are used to get the solution of the HIV model. These are the important numerical methods. The comparison results also are described with the physical meaning of the solutions of the model.

Findings

HIV model is analyzed under the view of fractional and AB derivative in Atangana-Baleanu-Caputo sense. The uniqueness of the solution is proved by using Banach Fixed point. The solution is derived with the help of Sumudu transform. Further, the authors employed fractional Adam-Bashforth method and Euler method to enumerate numerical results. The authors have used several values of fractional orders to present the outcomes graphically. The above calculations have been done with the help of MATLAB (R2016a). The numerical scheme used in the proposed study is valid and fruitful, and the same can be used to explore other real issues.

Research limitations/implications

This investigation can be done for the real data sets.

Practical implications

This paper aims to express the solution of the HIV model in a better way with the effect of non-locality, this work is very useful.

Originality/value

In this work, HIV model is developed with the help of Atangana- Baleanu operator in Caputo sense. By using Banach Fixed point, the authors proved that the solution is unique. Also, the solution is presented with the help of Sumudu transform. The behaviors of the solutions are checked for different values of fractional order derivatives with the physical meaning with help of the Adam-Bashforth method and the Euler method.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

S. Saha Ray

The purpose of this paper is to consider the time-splitting Fourier spectral (TSFS) method to solve the fractional coupled Klein–Gordon–Schrödinger (K-G-S) equations. A…

Abstract

Purpose

The purpose of this paper is to consider the time-splitting Fourier spectral (TSFS) method to solve the fractional coupled Klein–Gordon–Schrödinger (K-G-S) equations. A time-splitting spectral approach is applied for discretizing the Schrödinger-like equation and along with that, a pseudospectral discretization has been accurately utilized for the temporal derivatives in the Klein–Gordon-like equation. Furthermore, the time-splitting scheme is proved to be unconditionally stable. Numerical experiments guarantee high accuracy of the TSFS scheme for the K-G-S equations. Here, the derivative of fractional order is taken in the Riesz sense.

Design/methodology/approach

The focus of this paper is to study the Riesz fractional coupled K-G-S equations using the TSFS method. This method is dependent on evaluating the solution to the given problem in small steps, and treating the nonlinear and linear steps separately. The nonlinear step is made in the time domain, while the linear step is made in the frequency domain, which necessitates the use of Fourier transform back and forth. It is a very effective, powerful and efficient method to solve the nonlinear differential equations, as in previous works (Bao et al., 2002; Bao and Yang, 2007; Muslu and Erbay, 2003; Borluk et al., 2007), the initial and boundary-value problem is decomposed into linear and nonlinear subproblems. Summarizing the technique of the TSFS method, it can be stated that first the Schrödinger-like equation is solved in two splitting steps. Then, the Klein–Gordon-like equation is solved by discretizing the spatial derivatives by means of the pseudospectral method.

Findings

The utilized method is found to be very efficient and accurate. Moreover, the time-splitting spectral scheme is found to be unconditionally stable. By means of thorough study, it is found that the spectral method is time-reversible, is gauge-invariant and also conserves the total charge. Moreover, the results have been graphically presented to exhibit the accuracy of the proposed methods. Apart from that, the numerical solutions have been also compared with the exact solutions. Numerical experiments establish that the proposed technique manifests high accuracy and efficiency.

Originality/value

To the authors’ best knowledge, the Riesz fractional coupled K-G-S equations have been for the first time solved by using the TSFS method.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 January 2021

Ailian Chang, HongGuang Sun, K. Vafai and Erfan Kosari

This paper aims to use a fractional constitutive model with a nonlocal velocity gradient for replacing the nonlinear constitutive model to characterize its complex rheological…

Abstract

Purpose

This paper aims to use a fractional constitutive model with a nonlocal velocity gradient for replacing the nonlinear constitutive model to characterize its complex rheological behavior, where non-linear characteristics exist, for example, the inherent viscous behavior of the crude oil. The feasibility and flexibility of the fractional model are tested via a case study of non-Newtonian fluid. The finite element method is non-Newtonian used to numerically solve both momentum equation and energy equation to describe the fluid flow and convection heat transfer process.

Design/methodology/approach

This paper provides a comprehensive theoretical and numerical study of flow and heat transfer of non-Newtonian fluids in a pipe based on the fractional constitutive model. Contrary to fractional order a, the rheological property of non-Newtonian fluid changes from shear-thinning to shear-thickening with the increase of power-law index n, therefore the flow and heat transfer are hindered to some extent.

Findings

This paper discusses two dimensionless parameters on flow regime and thermal patterns, including Reynolds number (Re) and Nusselt number (Nu) in evaluating the flow rate and heat transfer rate. Analysis results show that the viscosity of the non-Newtonian fluid decreases with the rheological index (order α) increasing. While large fractional (order α) corresponds to the enhancement of heat transfer capacity.

Research limitations/implications

First, it is observed that the increase of the Re results in an increase of the local Nusselt number (Nul). It means the heat transfer enhancement ratio increases with Re. Meanwhile, the increasement of the Nul indicating the enhancement in the heat transfer coefficient, produces a higher speed flow of crude oil.

Originality/value

This study presents a new numerical investigation on characteristics of steady-state pipe flow and forced convection heat transfer by using a fractional constitutive model. The influences of various non-dimensional characteristic parameters of fluid on the velocity and temperature fields are analyzed in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

11 – 20 of 70