Search results

1 – 10 of 19
Article
Publication date: 28 October 2014

Talaat El-Sayed El-Danaf, Mfida Ali Zaki and Wedad Moenaaem

The purpose of this paper is to investigate the possibility of extension to the variational iteration and the Adomian decomposition methods for solving nonlinear Huxley equation

Abstract

Purpose

The purpose of this paper is to investigate the possibility of extension to the variational iteration and the Adomian decomposition methods for solving nonlinear Huxley equation with time-fractional derivative.

Design/methodology/approach

Objectives achieved the main methods: the fractional derivative of f (x) in the Caputo sense is first stated. Second, the time-fractional Huxley equation is written in a differential operator form where the differential operator is in Caputo sense. After acting on both sides by the inverse operator of the fractional differential operator in Caputo sense, the Adomian's decomposition is then used to get the power series solution of the resulted time-fractional Huxley equation. Also, a second objective is achieved by applying the variational iteration method to get approximate solutions for the time-fractional Huxley equation.

Findings

There are some important findings to state and summarize here. First, the variational iteration method and the decomposition method provide the solutions in terms of convergent series with easily computable components for this considered problem. Second, it seems that the approximate solution of time-fractional Huxley equation using the decomposition method converges faster than the approximate solution using the variational iteration method. Third, the variational iteration method handles nonlinear equations without any need for the so-called Adomian polynomials. However, Adomian decomposition method provides the components of the exact solution, where these components should follow the summation given in Equation (21).

Originality/value

This paper presents new materials in terms of employing the variational iteration and the Adomian decomposition methods to solve the problem under consideration. It is expected that the results will give some insightful conclusions for the used techniques to handle similar fractional differential equations. This emphasizes the fact that the two methods are applicable to a broad class of nonlinear problems in fractional differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 October 2018

Umer Saeed, Mujeeb ur Rehman and Qamar Din

The purpose of this paper is to propose a method for solving nonlinear fractional partial differential equations on the semi-infinite domain and to get better and more accurate…

Abstract

Purpose

The purpose of this paper is to propose a method for solving nonlinear fractional partial differential equations on the semi-infinite domain and to get better and more accurate results.

Design/methodology/approach

The authors proposed a method by using the Chebyshev wavelets in conjunction with differential quadrature technique. The operational matrices for the method are derived, constructed and used for the solution of nonlinear fractional partial differential equations.

Findings

The operational matrices contain many zero entries, which lead to the high efficiency of the method and reasonable accuracy is achieved even with less number of grid points. The results are in good agreement with exact solutions and more accurate as compared to Haar wavelet method.

Originality/value

Many engineers can use the presented method for solving their nonlinear fractional models.

Article
Publication date: 29 July 2019

Umer Saeed and Muhammad Umair

The purpose of the paper is to extend the differential quadrature method (DQM) for solving time and space fractional non-linear partial differential equations on a semi-infinite…

Abstract

Purpose

The purpose of the paper is to extend the differential quadrature method (DQM) for solving time and space fractional non-linear partial differential equations on a semi-infinite domain.

Design/methodology/approach

The proposed method is the combination of the Legendre polynomials and differential quadrature method. The authors derived and constructed the new operational matrices for the fractional derivatives, which are used for the solutions of non-linear time and space fractional partial differential equations.

Findings

The fractional derivative of Lagrange polynomial is a big hurdle in classical DQM. To overcome this problem, the authors represent the Lagrange polynomial in terms of shifted Legendre polynomial. They construct a transformation matrix which transforms the Lagrange polynomial into shifted Legendre polynomial of arbitrary order. Then, they obtain the new weighting coefficients matrices for space fractional derivatives by shifted Legendre polynomials and use these in conversion of a non-linear fractional partial differential equation into a system of fractional ordinary differential equations. Convergence analysis for the proposed method is also discussed.

Originality/value

Many engineers can use the presented method for solving their time and space fractional non-linear partial differential equation models. To the best of the authors’ knowledge, the differential quadrature method has never been extended or implemented for non-linear time and space fractional partial differential equations.

Article
Publication date: 17 July 2020

Amit Prakash and Vijay Verma

The purpose of this paper is to apply an efficient hybrid computational numerical technique, namely, q-homotopy analysis Sumudu transform method (q-HASTM) and residual power…

Abstract

Purpose

The purpose of this paper is to apply an efficient hybrid computational numerical technique, namely, q-homotopy analysis Sumudu transform method (q-HASTM) and residual power series method (RPSM) for finding the analytical solution of the non-linear time-fractional Hirota–Satsuma coupled KdV (HS-cKdV) equations.

Design/methodology/approach

The proposed technique q-HASTM is the graceful amalgamations of q-homotopy analysis method with Sumudu transform via Caputo fractional derivative, whereas RPSM depend on generalized formula of Taylors series along with residual error function.

Findings

To illustrate and validate the efficiency of the proposed technique, the authors analyzed the projected non-linear coupled equations in terms of fractional order. Moreover, the physical behavior of the attained solution has been captured in terms of plots and by examining the L2 and L error norm for diverse value of fractional order.

Originality/value

The authors implemented two technique, q-HASTM and RPSM to obtain the solution of non-linear time-fractional HS-cKdV equations. The obtained results and comparison between q-HASTM and RPSM, shows that the proposed methods provide the solution of non-linear models in form of a convergent series, without using any restrictive assumption. Also, the proposed algorithm is easy to implement and highly efficient to analyze the behavior of non-linear coupled fractional differential equation arisen in various area of science and engineering.

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Article
Publication date: 8 January 2020

Muhammad Ismail, Mujeeb ur Rehman and Umer Saeed

The purpose of this study is to obtain the numerical scheme of finding the numerical solutions of arbitrary order partial differential equations subject to the initial and…

Abstract

Purpose

The purpose of this study is to obtain the numerical scheme of finding the numerical solutions of arbitrary order partial differential equations subject to the initial and boundary conditions.

Design/methodology/approach

The authors present a novel Green-Haar approach for the family of fractional partial differential equations. The method comprises a combination of Haar wavelet method with the Green function. To handle the nonlinear fractional partial differential equations the authors use Picard technique along with Green-Haar method.

Findings

The results for some numerical examples are documented in tabular and graphical form to elaborate on the efficiency and precision of the suggested method. The obtained results by proposed method are compared with the Haar wavelet method. The method is better than the conventional Haar wavelet method, for the tested problems, in terms of accuracy. Moreover, for the convergence of the proposed technique, inequality is derived in the context of error analysis.

Practical implications

The authors present numerical solutions for nonlinear Burger’s partial differential equations and two-term partial differential equations.

Originality/value

Engineers and applied scientists may use the present method for solving fractional models appearing in applications.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 January 2021

Ram Jiwari and Alf Gerisch

This paper aims to develop a meshfree algorithm based on local radial basis functions (RBFs) combined with the differential quadrature (DQ) method to provide numerical…

Abstract

Purpose

This paper aims to develop a meshfree algorithm based on local radial basis functions (RBFs) combined with the differential quadrature (DQ) method to provide numerical approximations of the solutions of time-dependent, nonlinear and spatially one-dimensional reaction-diffusion systems and to capture their evolving patterns. The combination of local RBFs and the DQ method is applied to discretize the system in space; implicit multistep methods are subsequently used to discretize in time.

Design/methodology/approach

In a method of lines setting, a meshless method for their discretization in space is proposed. This discretization is based on a DQ approach, and RBFs are used as test functions. A local approach is followed where only selected RBFs feature in the computation of a particular DQ weight.

Findings

The proposed method is applied on four reaction-diffusion models: Huxley’s equation, a linear reaction-diffusion system, the Gray–Scott model and the two-dimensional Brusselator model. The method captured the various patterns of the models similar to available in literature. The method shows second order of convergence in space variables and works reliably and efficiently for the problems.

Originality/value

The originality lies in the following facts: A meshless method is proposed for reaction-diffusion models based on local RBFs; the proposed scheme is able to capture patterns of the models for big time T; the scheme has second order of convergence in both time and space variables and Nuemann boundary conditions are easy to implement in this scheme.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 June 2021

KangLe Wang

The purpose of this paper is the coupled nonlinear fractal Schrödinger system is defined by using fractal derivative, and its variational principle is constructed by the fractal…

Abstract

Purpose

The purpose of this paper is the coupled nonlinear fractal Schrödinger system is defined by using fractal derivative, and its variational principle is constructed by the fractal semi-inverse method. The approximate analytical solution of the coupled nonlinear fractal Schrödinger system is obtained by the fractal variational iteration transform method based on the proposed variational theory and fractal two-scales transform method. Finally, an example illustrates the proposed method is efficient to deal with complex nonlinear fractal systems.

Design/methodology/approach

The coupled nonlinear fractal Schrödinger system is described by using the fractal derivative, and its fractal variational principle is obtained by the fractal semi-inverse method. A novel approach is proposed to solve the fractal model based on the variational theory.

Findings

The fractal variational iteration transform method is an excellent method to solve the fractal differential equation system.

Originality/value

The author first presents the fractal variational iteration transform method to find the approximate analytical solution for fractal differential equation system. The example illustrates the accuracy and efficiency of the proposed approach.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 July 2020

Yasir Khan

In the nonlinear model of reaction–diffusion, the Fitzhugh–Nagumo equation plays a very significant role. This paper aims to generate innovative solitary solutions of the…

Abstract

Purpose

In the nonlinear model of reaction–diffusion, the Fitzhugh–Nagumo equation plays a very significant role. This paper aims to generate innovative solitary solutions of the Fitzhugh–Nagumo equation through the use of variational formulation.

Design/methodology/approach

The partial differential equation of Fitzhugh–Nagumo is modified by the appropriate wave transforms into a dimensionless nonlinear ordinary differential equation, which is solved by a semi-inverse variational method.

Findings

This paper uses a variational approach to the Fitzhugh–Nagumo equation developing new solitary solutions. The condition for the continuation of new solitary solutions has been met. In addition, this paper sets out the Fitzhugh–Nagumo equation fractal model and its variational principle. The findings of the solitary solutions have shown that the suggested method is very reliable and efficient. The suggested algorithm is very effective and is almost ideal for use in such problems.

Originality/value

The Fitzhugh–Nagumo equation is an important nonlinear equation for reaction–diffusion and is typically used for modeling nerve impulses transmission. The Fitzhugh–Nagumo equation is reduced to the real Newell–Whitehead equation if β = −1. This study provides researchers with an extremely useful source of information in this area.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 October 2020

Özlem Ersoy Hepson

The purpose of this study is to construct quartic trigonometric tension (QTT) B-spline collocation algorithms for the numerical solutions of the Coupled Burgers’ equation.

Abstract

Purpose

The purpose of this study is to construct quartic trigonometric tension (QTT) B-spline collocation algorithms for the numerical solutions of the Coupled Burgers’ equation.

Design/methodology/approach

The finite elements method (FEM) is a numerical method for obtaining an approximate solution of partial differential equations (PDEs). The development of high-speed computers enables to development FEM to solve PDEs on both complex domain and complicated boundary conditions. It also provides higher-order approximation which consists of a vector of coefficients multiplied by a set of basis functions. FEM with the B-splines is efficient due both to giving a smaller system of algebraic equations that has lower computational complexity and providing higher-order continuous approximation depending on using the B-splines of high degree.

Findings

The result of the test problems indicates the reliability of the method to get solutions to the CBE. QTT B-spline collocation approach has convergence order 3 in space and order 1 in time. So that nonpolynomial splines provide smooth solutions during the run of the program.

Originality/value

There are few numerical methods build-up using the trigonometric tension spline for solving differential equations. The tension B-spline collocation method is used for finding the solution of Coupled Burgers’ equation.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 19