Search results

1 – 10 of 15
Article
Publication date: 7 August 2017

Li Xiong, Zhenlai Liu and Xinguo Zhang

Lack of optimization and improvement on experimental circuits precludes comprehensive statements. It is a deficiency of the existing chaotic circuit technology. One of the…

Abstract

Purpose

Lack of optimization and improvement on experimental circuits precludes comprehensive statements. It is a deficiency of the existing chaotic circuit technology. One of the aims of this paper is to solve the above mentioned problems. Another purpose of this paper is to construct a 10 + 4-type chaotic secure communication circuit based on the proposed third-order 4 + 2-type circuit which can output chaotic phase portraits with high accuracy and high stability.

Design/methodology/approach

In Section 2 of this paper, a novel third-order 4 + 2 chaotic circuit is constructed and a new third-order Lorenz-like chaotic system is proposed based on the 4 + 2 circuit. Then some simulations are presented to verify that the proposed system is chaotic by using Multisim software. In Section 3, a fourth-order chaotic circuit is proposed on the basis of the third-order 4 + 2 chaotic circuit. In Section 4, the circuit design method of this paper is applied to chaotic synchronization and secure communication. A new 10 + 4-type chaotic secure communication circuit is proposed based on the novel third-order 4 + 2 circuit. In Section 5, the proposed third-order 4 + 2 chaotic circuit and the fourth-order chaotic circuit are implemented in an analog electronic circuit. The analog circuit implementation results match the Multisim results.

Findings

The simulation results show that the proposed fourth-order chaotic circuit can output six phase portraits, and it can output a stable fourth-order double-vortex chaotic signal. A new 10 + 4-type chaotic secure communication circuit is proposed based on the novel third-order 4 + 2 circuit. The scheme has the advantages of clear thinking, efficient and high practicability. The experimental results show that the precision is improved by 2-3 orders of magnitude. Signal-to-noise ratio meets the requirements of engineering design. It provides certain theoretical and technical bases for the realization of a large-scale integrated circuit with a memristor. The proposed circuit design method can also be used in other chaotic systems.

Originality/value

In this paper, a novel third-order 4 + 2 chaotic circuit is constructed and a new chaotic system is proposed on the basis of the 4 + 2 chaotic circuit for the first time. Some simulations are presented to verify its chaotic characteristics by Multisim. Then the novel third-order 4 + 2 chaotic circuit is applied to construct a fourth-order chaotic circuit. Simulation results verify the existence of the new fourth-order chaotic system. Moreover, a new 10 + 4-type chaotic secure communication circuit is proposed based on chaotic synchronization of the novel third-order 4 + 2 circuit. To illustrate the effectiveness of the proposed scheme, the intensity limit and stability of the transmitted signal, the characteristic of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. Finally, the proposed third-order 4 + 2 chaotic circuit and the fourth-order chaotic circuit are implemented through an analog electronic circuit, which are characterized by their high accuracy and good robustness. The analog circuit implementation results match the Multisim results.

Article
Publication date: 15 November 2019

Li Xiong, Xinguo Zhang and Yan Chen

The ammeter can measure the direct current and low-frequency alternating current through the wires, but it is difficult to measure complex waveforms. The oscilloscope can…

101

Abstract

Purpose

The ammeter can measure the direct current and low-frequency alternating current through the wires, but it is difficult to measure complex waveforms. The oscilloscope can measure complex waveforms, but it is easy to measure the voltage waveform and difficult to measure the current waveform. Thus, how to measure complex current waveforms with oscilloscope is an important and crucial issue that needs to be solved in practical engineering applications. To solve the above problems, an active short circuit line method is proposed to measure the volt-ampere characteristic curve of chaotic circuits.

Design/methodology/approach

In this paper, an active short circuit line method is proposed to measure the volt-ampere characteristic curve of various chaotic circuits especially for memristive systems. A memristor-based chaotic system is introduced, and the corresponding memristor-based circuit is constructed and implemented by using electronic components.

Findings

The chaotic attractors and volt-ampere characteristic curve of the memristor-based chaotic circuit are successfully analyzed and verified by oscilloscope measurement with the proposed active short circuit line method. Accordingly, the hardware circuit experiments are carried out to validate the effectiveness and feasibility of the active short circuit line method for these chaotic circuits. A good agreement is shown between the numerical simulations and the experimental results.

Originality/value

The primary contributions of this paper are as follows: an active short circuit line method for measuring the volt-ampere characteristic curve of chaotic circuits is proposed for the first time. A memristor-based chaotic system is also constructed by using memristor as nonlinear term. Then, the active short circuit line method is applied to measure the volt-ampere characteristic curve of the corresponding memristor-based chaotic circuit.

Article
Publication date: 4 July 2018

Yanjun Lu, Li Xiong, Yongfang Zhang, Peijin Zhang, Cheng Liu, Sha Li and Jianxiong Kang

This paper aims to introduce a novel four-dimensional hyper-chaotic system with different hyper-chaotic attractors as certain parameters vary. The typical dynamical…

Abstract

Purpose

This paper aims to introduce a novel four-dimensional hyper-chaotic system with different hyper-chaotic attractors as certain parameters vary. The typical dynamical behaviors of the new hyper-chaotic system are discussed in detail. The control problem of these hyper-chaotic attractors is also investigated analytically and numerically. Then, two novel electronic circuits of the proposed hyper-chaotic system with different parameters are presented and realized using physical components.

Design/methodology/approach

The adaptive control method is derived to achieve chaotic synchronization and anti-synchronization of the novel hyper-chaotic system with unknown parameters by making the synchronization and anti-synchronization error systems asymptotically stable at the origin based on Lyapunov stability theory. Then, two novel electronic circuits of the proposed hyper-chaotic system with different parameters are presented and realized using physical components. Multisim simulations and electronic circuit experiments are consistent with MATLAB simulation results and they verify the existence of these hyper-chaotic attractors.

Findings

Comparisons among MATLAB simulations, Multisim simulation results and physical experimental results show that they are consistent with each other and demonstrate that changing attractors of the hyper-chaotic system exist.

Originality/value

The goal of this paper is to construct a new four-dimensional hyper-chaotic system with different attractors as certain parameters vary. The adaptive synchronization and anti-synchronization laws of the novel hyper-chaotic system are established based on Lyapunov stability theory. The corresponding electronic circuits for the novel hyper-chaotic system with different attractors are also implemented to illustrate the accuracy and efficiency of chaotic circuit design.

Details

Circuit World, vol. 44 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 11 May 2020

Mengjie Hua, Shuo Yang, Quan Xu, Mo Chen, Huagan Wu and Bocheng Bao

The purpose of this paper is to develop two types of simple jerk circuits and to carry out their dynamical analyses using a unified mathematical model.

Abstract

Purpose

The purpose of this paper is to develop two types of simple jerk circuits and to carry out their dynamical analyses using a unified mathematical model.

Design/methodology/approach

Two types of simple jerk circuits only involve a nonlinear resistive feedback channel composited by a nonlinear device and an inverter. The nonlinear device is implemented through parallelly connecting two diode-switch-based series branches. According to the classifications of switch states and circuit types, a unified mathematical model is established for these two types of simple jerk circuits, and the origin symmetry and scale proportionality along with the origin equilibrium stability are thereby discussed. The coexisting bifurcation behaviors in the two types of simple jerk systems are revealed by bifurcation plots, and the origin symmetry and scale proportionality are effectively demonstrated by phase plots and attraction basins. Moreover, hardware experimental measurements are performed, from which the captured results well validate the numerical simulations.

Findings

Two types of simple jerk circuits are unified through parallelly connecting two diode-switch-based series branches and a unified mathematical model with six kinds of nonlinearities is established. Especially, the origin symmetry and scale proportionality for the two types of simple jerk systems are discussed quantitatively. These jerk circuits are all simple and inexpensive, easy to be physically implemented, which are helpful to explore chaos-based engineering applications.

Originality/value

Unlike previous works, the significant values are that through unifying these two types of simple jerk systems, a unified mathematical model with six kinds of nonlinearities is established, upon which symmetrically scaled coexisting behaviors are numerically disclosed and experimentally demonstrated.

Details

Circuit World, vol. 47 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 July 2020

Dong Zhu, Liping Hou, Mo Chen and Bocheng Bao

The purpose of this paper is to develop an field programmable gate array (FPGA)-based neuron circuit to mimic dynamical behaviors of tabu learning neuron model.

Abstract

Purpose

The purpose of this paper is to develop an field programmable gate array (FPGA)-based neuron circuit to mimic dynamical behaviors of tabu learning neuron model.

Design/methodology/approach

Numerical investigations for the tabu learning neuron model show the coexisting behaviors of bi-stability. To reproduce the numerical results by hardware experiments, a digitally FPGA-based neuron circuit is constructed by pure floating-point operations to guarantee high computational accuracy. Based on the common floating-point operators provided by Xilinx Vivado software, the specific functions used in the neuron model are designed in hardware description language programs. Thus, by using the fourth-order Runge-Kutta algorithm and loading the specific functions orderly, the tabu learning neuron model is implemented on the Xilinx FPGA board.

Findings

With the variation of the activation gradient, the initial-related coexisting attractors with bi-stability are found in the tabu learning neuron model, which are experimentally demonstrated by a digitally FPGA-based neuron circuit.

Originality/value

Without any piecewise linear approximations, a digitally FPGA-based neuron circuit is implemented using pure floating-point operations, from which the initial conditions-related coexisting behaviors are experimentally demonstrated in the tabu learning neuron model.

Details

Circuit World, vol. 47 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 10 November 2022

Xinxing Yin, Juan Chen, Wenxin Yu, Yuan Huang, Wenxiang Wei, Xinjie Xiang and Hao Yan

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield…

Abstract

Purpose

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural network (5D-HNN) to secure communication will greatly improve the confidentiality of signal transmission and greatly enhance the anticracking ability of the system.

Design/methodology/approach

Chaos masking: Chaos masking is the process of superimposing a message signal directly into a chaotic signal and masking the signal using the randomness of the chaotic output. Synchronous coupling: The coupled synchronization method first replicates the drive system to get the response system, and then adds the appropriate coupling term between the drive The synchronization error and the coupling term of the system will eventually converge to zero with time. The synchronization error and coupling term of the system will eventually converge to zero over time.

Findings

A 5D memristive neural network is obtained based on the original four-dimensional memristive neural network through the feedback control method. The system has five equations and contains infinite balance points. Compared with other systems, the 5D-HNN has rich dynamic behaviors, and the most unique feature is that it has multistable characteristics. First, its dissipation property, equilibrium point stability, bifurcation graph and Lyapunov exponent spectrum are analyzed to verify its chaotic state, and the system characteristics are more complex. Different dynamic characteristics can be obtained by adjusting the parameter k.

Originality/value

A new 5D memristive HNN is proposed and used in the secure communication

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 18 May 2021

Selcuk Emiroglu, Akif Akgül, Yusuf Adıyaman, Talha Enes Gümüş, Yılmaz Uyaroglu and Mehmet Ali Yalçın

The purpose of this paper is to develop new four-dimensional (4D) hyperchaotic system by adding another state variable and linear controller to three-dimensional T chaotic

Abstract

Purpose

The purpose of this paper is to develop new four-dimensional (4D) hyperchaotic system by adding another state variable and linear controller to three-dimensional T chaotic dynamical systems. Its dynamical analyses, circuit experiment, control and synchronization applications are presented.

Design/methodology/approach

A new 4D hyperchaotic attractor is achieved through a simulation, circuit experiment and mathematical analysis by obtaining the Lyapunov exponent spectrum, equilibrium, bifurcation, Poincaré maps and power spectrum. Moreover, hardware experimental measurements are performed and obtained results well validate the numerical simulations. Also, the passive control method is presented to make the new 4D hyperchaotic system stable at the zero equilibrium and synchronize the two identical new 4D hyperchaotic system with different initial conditions.

Findings

The passive controllers can stabilize the new 4D chaotic system around equilibrium point and provide the synchronization of new 4D chaotic systems with different initial conditions. The findings from Matlab simulations, circuit design simulations in computer and physical circuit experiment are consistent with each other in terms of comparison.

Originality/value

The 4D hyperchaotic system is presented, and dynamical analysis and numerical simulation of the new hyperchaotic system were firstly carried out. The circuit of new 4D hyperchaotic system is realized, and control and synchronization applications are performed.

Details

Circuit World, vol. 48 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Article
Publication date: 8 June 2015

Ahmad Mozaffari, Nasser L. Azad and Alireza Fathi

The purpose of this paper is to examine the structural and computational potentials of a powerful class of neural networks (NNs), called multiple-valued logic neural…

Abstract

Purpose

The purpose of this paper is to examine the structural and computational potentials of a powerful class of neural networks (NNs), called multiple-valued logic neural networks (MVLNN), for predicting the behavior of phenomenological systems with highly nonlinear dynamics. MVLNNs are constructed based on the integration of a number of neurons working based on the principle of multiple-valued logics. MVLNNs possess some particular features, namely complex-valued weights, input, and outputs coded by kth roots of unity, and a continuous activation as a mean for transferring numbers from complex spaces to trigonometric spaces, which distinguish them from most of the existing NNs.

Design/methodology/approach

The presented study can be categorized into three sections. At the first part, the authors attempt at providing the mathematical formulations required for the implementation of ARX-based MVLNN (AMVLNN). In this context, it is indicated that how the concept of ARX can be used to revise the structure of MVLNN for online applications. Besides, the stepwise formulation for the simulation of Chua’s oscillatory map and multiple-valued logic-based BP are given. Through an analysis, some interesting characteristics of the Chua’s map, including a number of possible attractors of the state and sequences generated as a function of time, are given.

Findings

Based on a throughout simulation as well as a comprehensive numerical comparative study, some important features of AMVLNN are demonstrated. The simulation results indicate that AMVLNN can be employed as a tool for the online identification of highly nonlinear dynamic systems. Furthermore, the results show the compatibility of the Chua’s oscillatory system with BP for an effective tuning of the synaptic weights. The results also unveil the potentials of AMVLNN as a fast, robust, and efficient control-oriented model at the heart of NMPC control schemes.

Originality/value

This study presents two innovative propositions. First, the structure of MVLNN is modified based on the concept of ARX system identification programming to suit the base structure for coping with chaotic and highly nonlinear systems. Second, the authors share the findings about the learning characteristics of MVLNNs. Through an exhaustive comparative study and considering different rival methodologies, a novel and efficient double-stage learning strategy is proposed which remarkably improves the performance of MVLNNs. Finally, the authors describe the outline of a novel formulation which prepares the proposed AMVLNN for applications in NMPC controllers for dynamic systems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 8 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 7 April 2022

Hongwei Yang, Yingying Wang, Meng Zhang and Lianchun Long

This paper aims to provide a symplectic conservation numerical analysis method for the study of nonlinear LC circuit.

Abstract

Purpose

This paper aims to provide a symplectic conservation numerical analysis method for the study of nonlinear LC circuit.

Design/methodology/approach

The flux linkage control type nonlinear inductance model is adopted, and the LC circuit can be converted into the Hamiltonian system by introducing the electric charge as the state variable of the flux linkage. The nonlinear Hamiltonian matrix equation can be solved by perturbation method, which can be written as the sum of linear and nonlinear terms. Firstly, the linear part can be solved exactly. On this basis, the nonlinear part is analyzed by the canonical transformation. Then, the coefficient matrix of the obtained equation is still a Hamiltonian matrix, so symplectic conservation is achieved.

Findings

Numerical results reveal that the method proposed has strong stability, high precision and efficiency, and it has great advantages in long-term simulations.

Originality/value

This method provides a novel and effective way in studying the nonlinear LC circuit.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 15