Search results

1 – 10 of 13
Article
Publication date: 9 May 2016

Sanjeev Kumar and Manoj Kumar

– The purpose of this paper is to check the actual life of lubricating oil.

Abstract

Purpose

The purpose of this paper is to check the actual life of lubricating oil.

Design/methodology/approach

Present work aims to find the remaining useful life of the lubricant based on study of periodic deterioration of oil. Chronological samples of oil were selected from the dumper of a local open cast mine. The deterioration in oil was studied using Fourier transform infrared (FTIR) spectroscopy.

Findings

The data obtained from FTIR spectroscopy was used in vector projection approach and analytical hierarchy process to evaluate the remaining useful life of the lubricating oil.

Originality/value

FTIR spectra were used to study the periodic deterioration of oil. IR radiation with all frequencies in the range was passed through the sample. Radiations at certain frequency, depending upon the molecular structure of compounds in the sample were absorbed and rest was transmitted by the sample. A spectrum representing molecular absorption or transmission was obtained. Transmission spectra have been used in the study. Comparing the percent value of transmission peak of different chronological sample with that of fresh oil was used to represent the periodic degradation in oil.

Details

Journal of Quality in Maintenance Engineering, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 8 January 2018

Yanfei Yang, Xiaobo Wang, Sen Mei, Xing Zhu, Shiqiang Chen, Peng Xiong, Zhihai Hu, Kun Xiong and Dong Song Yuan

The purpose of this paper is to investigate the tribological performance and mechanisms of BN/calcium borate nanocomposites (BCBNs) as additives in lubricating oil.

222

Abstract

Purpose

The purpose of this paper is to investigate the tribological performance and mechanisms of BN/calcium borate nanocomposites (BCBNs) as additives in lubricating oil.

Design/methodology/approach

BCBNs were prepared by heterogeneous deposition method. And the morphology and structure of samples were analysed by transmission electron microscopy, Fourier transform infrared spectra and X-ray powder diffraction pattern. The maximum non-seizure load (PB) of samples was tested using four-ball friction tester. The average friction coefficients and wear tracks were obtained. In addition, tribological mechanism was also investigated using optical microscope, energy dispersive spectroscopy and X-ray photoelectron spectroscope.

Findings

It was found that the nanocomposites present core-shell nanostructure with the thickness of shell around 12 nm and the diameter of particles 100-200 nm, and tribological tests indicate that the PB value of BCBNs was increased by 113 per cent, whereas the average friction coefficient was decreased by 23.6 per cent and the bloom’s wear area was also decreased by 25.2 per cent.

Originality/value

This paper involves investigation on tribological properties and mechanism of the BCBNs with core-shell structure.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 May 2011

S. Sethi and B.C. Ray

The purpose of this paper is to analyze microstructural integrity at the interface and consequent implicating effect on mechanical behavior of fiber‐reinforced polymer composites.

Abstract

Purpose

The purpose of this paper is to analyze microstructural integrity at the interface and consequent implicating effect on mechanical behavior of fiber‐reinforced polymer composites.

Design/methodology/approach

In the light of Fourier transform infrared spectroscope (FTIR imaging) and temperature‐modulated differential scanning calorimeter, a sorption mechanism was established. Thermal spike and thermal shock treatment was carried out at 150 and 80°C, respectively. This suggested that fiber/matrix adhesion rests on the structure and properties of both the fiber and matrix in the region near the interface during the hygrothermal treatment.

Findings

The carbon surface was found to selectively absorb the tertiary amine catalyst and to modify the chemical state of the cured resin apparently through the effects of absorbed water. The higher values of glass transition temperature (Tg) resulted in longer immersion time and higher exposure temperature. Together, these techniques provide a comprehensive picture of chemical and physical changes at the interphase region. Thermal spike of hybrid composite at 150°C temperature might possibly improve the adhesion level at the interface. Whereas, in case of thermal shock treatment at 80°C the fall in inter‐laminar shear strength value at higher number of cycles. This degradation of the interface region has been monitored by scanning electron microscope analysis.

Originality/value

The reported data are based on experimental investigation.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 May 2008

H.R. Zhou, X.G. Liu, D.M. Zhao, F. Lin and Y. Fan

The purpose of this paper is to synthesise and characterise nano‐alumina hybrid polyimide (PI) films.

Abstract

Purpose

The purpose of this paper is to synthesise and characterise nano‐alumina hybrid polyimide (PI) films.

Design/methodology/approach

PI nano‐composite films containing definitive contents of Al2O3 were prepared by the sol‐gel process of aluminum isopropoxide in the N, N′‐dimethylacetamide solution of polyamide acid. The films were characterised by Fourier transform infrared spectroscope, atomic forced microscope, and X‐ray fluorescent spectroscope (XRF). The thermal stability of the composite films was tested by TG.

Findings

PI nano‐Al2O3 films were prepared by the sol‐gel method. The XRF is an effective way to detect the inorganic phase of the composite films and measure the content of nano‐Al2O3.

Research limitations/implications

There are seldom reports about the PI composites containing Al2O3 through sol‐gel process.

Practical implications

PI has been widely used in the fields of aviation micro‐electron and less costly dyes.

Originality/value

Improved electricity insulation property of the PI films. Al2O3 particles were distributed homogeneously in the PI in nano‐scale by means of sol‐gel process.

Details

Pigment & Resin Technology, vol. 37 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 April 2020

Sukumar Nachiappan, Lami Amanuel, Tewodros Agazie and Seyoum Bihonegn

Wound healing is a dynamic process that relies on coordinated signaling molecules to succeed. Silk has proven to be a promising biomaterial for the development of a novel product…

Abstract

Purpose

Wound healing is a dynamic process that relies on coordinated signaling molecules to succeed. Silk has proven to be a promising biomaterial for the development of a novel product. The purpose of the study is development of silk films, augmented functionality can be provided to silk by means of loading honey and recombinant human epidermal growth factor (rhEGF).

Design/methodology/approach

In this research work, the authors set out to explore possibilities of silk-based biomedical device development with particular attention to different fabrication strategies that can be leveraged for this purpose. They have produced a novel silk-based drug delivery material, in the form of silk films. Scanning electronic microscope was used to observe the morphology and the highly specific surface area. The structure was studied by Fourier-transform infrared spectroscopy. This methodology is accomplished using in vivo study data using Wister albonia rats.

Findings

The developed films also provided a significant higher healing rate in vivo, with well-formed epidermis with faster granulation tissue formation when compared to the controls. Biodegradable polymeric materials based on blending aqueous dispersions of natural polymer sodium alginate, Chitosan and rhEGF complex, which allow controlled antiseptic release, are presented.

Originality/value

These results suggest that silk-based controlled release of Chitosan-rhEGF may serve as a new therapy to accelerate healing of burn wounds.

Details

Research Journal of Textile and Apparel, vol. 24 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 31 October 2018

Natalia Ewa Zalewska, Maja Mroczkowska-Szerszeń, Joerg Fritz and Maria Błęcka

This paper aims to characterize the mineral composition of Martian surfaces based on Thermal Emission Spectrometer (TES; Mars Global Surveyor) as measured in the infrared thermal…

Abstract

Purpose

This paper aims to characterize the mineral composition of Martian surfaces based on Thermal Emission Spectrometer (TES; Mars Global Surveyor) as measured in the infrared thermal range. It presents modeling and interpreting of TES spectral data from selected Martian regions from which the atmospheric influences had been removed using radiative transfer algorithm and deconvolution algorithm. The spectra from the dark area of Cimmeria Terra and the bright Isidis Planitia were developed in Philip Christensen’s and Joshua Bandfield’s publications, where these spectra were subjected to spectral deconvolution to estimate the mineral composition of the Martian surface. The results of the analyses of these spectra were used for the modeling of dusty and non-dusty surface of Mars. As an additional source, the mineral compositions of Polish basalts and mafic rocks were used for these surfaces as well as for modeling Martian meteorites Shergottites, Nakhlites and Chassignites. Finally, the spectra for the modeling of the Hellas region were obtained from the Planetary Fourier Spectrometer (PFS) – (Mars Express) and the mineralogical compositions of basalts from the southern part of Poland were used for this purpose. The Hellas region was modeled also using simulated Martian soil samples Phyllosilicatic Mars Regolith Simulant and Sulfatic Mars Regolith Simulant, showing as a result that the composition of this selected area has a high content of sulfates. Linear spectral combination was chosen as the best modeling method. The modeling was performed using PFSLook software written in the Space Research Centre of the Polish Academy of Sciences. Additional measurements were made with an infrared spectrometer in thermal infrared spectroscopy, for comparison with the measurements of PFS and TES. The research uses a kind of modeling that successfully matches mineralogical composition to the measured spectrum from the surface of Mars, which is the main goal of the publication. This method is used for areas where sample collection is not yet possible. The areas have been chosen based on public availability of the data.

Design/methodology/approach

The infrared spectra of the Martian surface were modeled by applying the linear combination of the spectra of selected minerals, which then are normalized against the measured surface area with previously separated atmosphere. The minerals for modeling are selected based on the expected composition of the Martian rocks, such as basalt. The software used for this purpose was PFSLook, a program written in C++ at the Space Research Centre of the Polish Academy of Sciences, which is based on adding the spectra of minerals in the relevant percentage, resulting in a final spectrum containing 100 per cent of the minerals.

Findings

The results of this work confirmed that there is a relationship between the modeled, altered and unaltered, basaltic surface and the measured spectrum from Martian instruments. Spectral deconvolution makes it possible to interpret the measured spectra from areas that are potentially difficult to explore or to choose interesting areas to explore on site. The method is described for mid-infrared because of software availability, but it can be successfully applied to shortwave spectra in near-infrared (NIR) band for data from the currently functioning Martian spectroscopes.

Originality/value

This work is the only one attempting modeling the spectra of the surface of Mars with a separated atmosphere and to determine the mineralogical composition.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 November 2021

Anthony Ikechukwu Obike, Wilfred Emori, Hitler Louis, Godwin Ifeanyi Ogbuehi, Paul Chukwuleke Okonkwo and Victoria Mfon Bassey

The purpose of this paper is to study the adsorption properties of a proven traditional medicine of West Africa origin, Alstonia boonei with an attempt to evaluate its application…

Abstract

Purpose

The purpose of this paper is to study the adsorption properties of a proven traditional medicine of West Africa origin, Alstonia boonei with an attempt to evaluate its application in the corrosion protection of mild steel in 5 M H2SO4 and 5 M HCl.

Design/methodology/approach

Phytochemical screening and Fourier transform infrared spectroscopy analysis were used to characterize the methanolic extract of the plant. Gravimetry, gasometry and electrochemical techniques were used in the corrosion inhibition studies of the extract and computational studies were used to describe the electronic and adsorption properties of eugenol, the most abundant phytochemical in Alstonia boonei.

Findings

The extract acted as a mixed-type inhibitor in both acidic solutions, with improved inhibition efficiency achieved with increasing concentration. While the efficiency increased with temperature for the HCl system, it decreased for the H2SO4 system. The mechanism of adsorption proposed for Alstonia boonei was chemisorption in the HCl system and physisorption in the H2SO4 system, and the adsorptions obeyed Langmuir isotherm at low temperatures. Computational parameters showed that eugenol, being a representative of Alstonia boonei, possesses excellent adsorption properties and has the potential to compete with other established plant-based corrosion inhibitors.

Research limitations/implications

As opposed to pure compounds with distinctive corrosion effects, plant extracts are generally composed of a myriad of phytoconstituents that competitively promote or inhibit the corrosion process and their net effect is evident as inhibition efficiencies. This is, therefore, the main research limitation associated with the corrosion inhibition study of Alstonia boonei.

Originality/value

Being very rich in antioxidant properties by its proven curative and preventive effects for diseases, the interest was stimulated towards the attractive results that abound from its corrosion protection of metals via its anti-oxidation route.

Article
Publication date: 13 April 2015

Hao Liu, Yujuan Zhang, Shengmao Zhang, Yanfen Chen, Pingyu Zhang and Zhijun Zhang

The purpose of this paper is synthesis of oil-soluble non-spherical nanoparticles modified with free phosphorus and sulphur modifier and investigation of their tribological…

Abstract

Purpose

The purpose of this paper is synthesis of oil-soluble non-spherical nanoparticles modified with free phosphorus and sulphur modifier and investigation of their tribological properties as environment-friendly lubricating oil additives.

Design/methodology/approach

To study the effect of morphology of nanoparticles on their tribological properties, rice-like CuO nanoparticles were synthesized. To improve the solubility of CuO nanoparticles in organic media, the in-situ surface modification method was used to synthesize these products. The morphology, composition and structure of as-synthesized CuO nanoparticles were investigated by means of transmission electron microscopy, X-ray powder diffraction, thermogravimetric analysis and Fourier transform infrared spectrometry. The tribological properties of as-synthesized CuO nanoparticles as an additive in liquid paraffin (LP) were evaluated with a four-ball tribometer. The morphology and elemental composition of worn steel ball surfaces were analysed by X-ray photoelectron spectroscopy.

Findings

It has been found that as-synthesized CuO nanoparticles with rice-like morphology have an average size of 7 and 15 nm along the shorter axle and longer axle, respectively, and can be well-dispersed in LP. Tribological properties evaluation results show that as-synthesized CuO nanoparticles as additives in LP show good friction-reducing, anti-wear and load-carrying capacities, especially under a higher normal load.

Originality/value

Oil-soluble rice-like CuO nanoparticles without phosphorus and sulphur were synthesized and their tribological properties as lubricating oil additives were also investigated in this paper. These results could be very helpful for application of CuO nanoparticles as environment-friendly lubricating oil additives, owing to their free phosphorus and sulphur elements characteristics.

Details

Industrial Lubrication and Tribology, vol. 67 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 October 2023

Nonsikelelo Sheron Mpofu, Josphat Igadwa Mwasiagi, Cleophas Achisa Mecha and Eric Oyondi Nganyi

This study aims to investigate the potential use of potato peel extracts as antibacterial finishes for cotton fabrics against Staphylococcus aureus and Escherichia coli. Potato…

Abstract

Purpose

This study aims to investigate the potential use of potato peel extracts as antibacterial finishes for cotton fabrics against Staphylococcus aureus and Escherichia coli. Potato peels are abundant as waste and provide a natural, cheaper and sustainable alternative means of preventing the spread of bacterial infections on cotton fabric.

Design/methodology/approach

This research included the characterization of potato peel extracts, application of the extract onto cotton fabric and efficacy testing of the treated cotton fabric against bacteria. Phytochemical screening, agar well diffusion antibacterial test, minimum inhibitory concentration and Fourier transform infrared (FTIR) tests were used to characterize the extract. Antibacterial efficacy of the treated fabric was determined qualitatively using the disc diffusion assay and quantitatively using the bacteria reduction test.

Findings

Phytochemical screening confirmed the presence of several secondary metabolites including phenols and flavonoids. Antibacterial tests revealed a positive response in Escherichia coli and Staphylococcus aureus with a zone of inhibition of 6.50 mm and 5.60 mm, respectively. Additional peaks on the FTIR spectroscopy confirmed the presence of potato peel extract on the treated cotton fabric. The treated cotton fabrics showed efficacy against Staphylococcus aureus and Escherichia coli up to 20 washes.

Originality/value

This study introduced the application of potato peel extracts onto cotton fabrics and assessment of the antibacterial properties before and after washing. Results of this study suggest that potato peel extracts can be used as an organic eco-friendly antibacterial finish for cotton fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 July 2023

Zulfiqar Ali Raza, Aisha Rehman, Faiza Anwar and Naseer Ahmad

This study aims to investigate the effect of the copresence of ferrous (Fe2+) ions and sodium dodecyl sulfate (SDS) on the activity of an amylase enzyme during the desizing of…

35

Abstract

Purpose

This study aims to investigate the effect of the copresence of ferrous (Fe2+) ions and sodium dodecyl sulfate (SDS) on the activity of an amylase enzyme during the desizing of greige viscose fabric for potential industrial applications. The removal of starches is an essential step before processing the fabric for dyeing and finishing operations. The authors tend to accomplish it in eco-friendly and sustainable ways.

Design/methodology/approach

The experiments were designed under the Taguchi approach, and the results were analyzed using grey relational analysis to optimize the process. The textile properties of absorbency, reducing sugars, bending length, weight loss, Tegawa rating and tensile strength were assessed using the standard protocols. The control and optimized viscose specimens were investigated for certain surface chemical properties using advanced analytical techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA).

Findings

The results demonstrate that the Fe2+ concentration and process time were the main influencing factors in the amylolytic desizing of viscose fabric. The optimized process conditions were found to be 0.1 mm Fe2+ ions, 3 mm SDS, 80°C, 7 pH and 30 min process time. The copresence of Fe2+ ions and SDS promoted the biodesizing of viscose fabric. The SEM, Fourier transform infrared spectroscopy, XRD and TGA results demonstrated that the sizing agent has efficiently been removed from the fabric surface.

Practical implications

The amylase desizing of viscose fabric in the presence of certain metal ions and surfactants is a significant subject as the enzyme may face them due to their prevalence in the water systems. This could also support the biodesizing and bioscouring operations to be done in one bath, thus making the textile pretreatment process both economical and environmentally sustainable.

Originality/value

The authors found no report on the biodesizing of viscose fabric in the copresence of Fe2+ ions and the SDS surfactant under statistical multiresponse optimization. The biodesized viscose fabric has been investigated using both conventional and analytical approaches.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 13