Search results

1 – 10 of 253
Article
Publication date: 14 January 2014

Lingtao Yu, Huajian Song, Tao Wang, Zhengyu Wang, Liqiang Sun and Zhijiang Du

The characteristic of static is quite important especially for the manipulator with force feedback. This paper aims to improve the traditional static model by considering the…

Abstract

Purpose

The characteristic of static is quite important especially for the manipulator with force feedback. This paper aims to improve the traditional static model by considering the limitations such as lacking of versatility and ignoring gravity of links. For this purpose, a new asymmetric mass distribution method on the analysis of universal “force-sensing” model has been put forward to overcome the limitations.

Design/methodology/approach

Through the forces and torques analysis of every link and the moving platform, the static model of 3-RUU manipulator is acquired. Then, based on the physical meaning analysis of every part in the static model of 3-RUU manipulator, a new asymmetric mass distribution method on the analysis of universal “force-sensing” model can be obtained.

Findings

The correctness of the static model of 3-RUU manipulator is verified by simulation results based on Pro/Engineer software and Adams software. Furthermore, experiment results based on a manipulator similar to the Omega.3 manipulator indicate that the universal “force-sensing” model can be applicable to the above manipulator.

Originality/value

A new asymmetric mass distribution method on the analysis of universal static mathematical model has been put forward. Based on physical meaning of the above method, the “force-sensing” model can be established quickly and it owns versatility, which can be applicable to the 3-RUU manipulator, the Omega.3 parallel manipulator and other similar manipulators with force feedback. In addition, it can improve the accuracy of the “force-sensing” model to a great extent.

Details

Industrial Robot: An International Journal, vol. 41 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 August 2020

Kun Li, Shuai Ji, Guojun Niu, Yue Ai, Bo Pan and Yili Fu

Existing robot-assisted minimally invasive surgery (RMIS) system lacks of force feedback, and it cannot provide the surgeon with interaction forces between the surgical…

Abstract

Purpose

Existing robot-assisted minimally invasive surgery (RMIS) system lacks of force feedback, and it cannot provide the surgeon with interaction forces between the surgical instruments and patient’s tissues. This paper aims to restore force sensation for the RMIS system and evaluate effect of force sensing in a master-slave manner.

Design/methodology/approach

This paper presents a four-DOF surgical instrument with modular joints and six-axis force sensing capability and proposes an incremental position mode master–slave control strategy based on separated position and orientation to reflect motion of the end of master manipulator to the end of surgical instrument. Ex-vivo experiments including tissue palpation and blunt dissection are conducted to verify the effect of force sensing for the surgical instrument. An experiment of trajectory tracking is carried out to test precision of the control strategy.

Findings

Results of trajectory tracking experiment show that this control strategy can precisely reflect the hand motion of the operator, and the results of the ex-vivo experiments including tissue palpation and blunt dissection illustrate that this surgical instrument can measure the six-axis interaction forces successfully for the RMIS.

Originality/value

This paper addresses the important role of force sensing and force feedback in RMIS, clarifies the feasibility to apply this instrument prototype in RMIS for force sensing and provides technical support of force feedback for further clinical application.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 March 2023

Qi Jiang, Jihua Li and Danish Masood

With the increasing development of the surgical robots, the opto-mechatronic technologies are more potential in the robotics system optimization. The optic signal plays an…

Abstract

Purpose

With the increasing development of the surgical robots, the opto-mechatronic technologies are more potential in the robotics system optimization. The optic signal plays an important role in opto-mechatronic systems. This paper aims to present a review of the research status on fiber-optic-based force and shape sensors in surgical robots.

Design/methodology/approach

Advances of fiber-optic-based force and shape sensing techniques in the past 20 years are investigated and summarized according to different surgical requirement and technical characteristics. The research status analysis and development prospects are discussed.

Findings

Compared with traditional electrical signal conduction, the phototransduction provides higher speed transmission, lower signal loss and the immunity to electromagnetic interference in robot perception. Most importantly, more and more advanced optic-based sensing technologies are applied to medical robots in the past two decades because the prominence is magnetic resonance imaging compatibility. For medical robots especially, fiber-optic sensing technologies can improve working security, manipulating accuracy and provide force and shape feedback to surgeon.

Originality/value

This is a new perspective. This paper mainly researches the application of optical fiber sensor according to different surgeries which is beneficial to learn the great potential of optical fiber sensor in surgical robots. By enumerating the research progress of medical robots in optimization design, multimode sensing and advanced materials, the development tendency of fiber-optic-based force and shape sensing technologies in surgical robots is prospected.

Details

Sensor Review, vol. 43 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 March 2018

Hamza Bendemra, Toufik Al Khawli, Muddasar Anwar, Dewald Swart and Cesare Stefanini

The purpose of this paper is to present a novel force sensing jig for robot-assisted drilling used to drill holes for the fastening of floating nut plates in aircraft assembly.

Abstract

Purpose

The purpose of this paper is to present a novel force sensing jig for robot-assisted drilling used to drill holes for the fastening of floating nut plates in aircraft assembly.

Design/methodology/approach

The paper describes the drill jig, which consists of a parallel gripper, peg-in-hole pins and a back-plate with a recess where a Polydimethylsiloxane cone is placed on top of a force sensor. As the jig approaches the part, the force sensor registers the applied force until it reaches steady state, which indicates full contact between the jig and the part. The peg-in-hole pins then lock into a pre-existing hole, which provides a mechanical reference, and the support plate provides back support during drilling.

Findings

Positional accuracy and the repeatability of the system were successfully placed within the specification for accuracy and repeatability (0.1 mm tolerance and 0.2 mm tolerance, respectively).

Practical implications

The drill jig can be integrated into existing robot drilling solutions and modified for specific applications. The integration of the force sensor provides data for engineers to monitor and analyze forces during drilling. The design of the force sensing drill jig is particularly suited to industrial prototype robot drilling end-effectors for small and medium manufacturers.

Originality/value

The key novelties of this drilling jig are in the compact assembly, modular design and inclusion of force sensing and back support features.

Details

Industrial Robot: An International Journal, vol. 45 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 8 May 2007

David Sanders

65

Abstract

Details

Industrial Robot: An International Journal, vol. 34 no. 3
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 1 August 2023

Haifeng Fang, Yangyang Wei and Shuo Dong

Tactile sensation is an important sensory function for robots in contact with the external environment. To better acquire tactile information about objects, this paper aims to…

Abstract

Purpose

Tactile sensation is an important sensory function for robots in contact with the external environment. To better acquire tactile information about objects, this paper aims to propose a three-layer structure of the interdigital flexible tactile sensor.

Design/methodology/approach

The sensor consists of a bottom electrode layer, a middle pressure-sensitive layer and a top indenter layer. First, the pressure sensitive material, structure design, fabrication process and circuit design of the sensor are introduced. Then, the calibration and performance test of the designed sensor is carried out. Four functions are used to fit and calibrate the relationship between the output voltage of the sensor and the contact force. Finally, the contact force sensing test of different weight objects and the flexible test of the sensor are carried out.

Findings

The performance test results show that the sensitivity of the sensor is 0.93 V/N when it is loaded with 0–3 N and 0.23 V/N when it is loaded with 3–5 N. It shows good repeatability, and the cross-interference between the sensing units is generally low. The contact force sensing test results of different weight objects show that the proposed sensor performs well in contact force. Each part of the sensor is a flexible material, allowing the sensor to achieve bending deformation, so that the sensor can better perceive the contact signs of the grasped object.

Practical implications

The sensor can paste the surface of the paper robot’s gripper to measure the contact force of the grasping object and estimate the contour of the object.

Originality/value

In this paper, a three-layer interdigital flexible tactile sensor is proposed, and the structural parameters of the interdigital electrode are designed to improve the sensitivity and response speed of the sensor. The indenter with three shapes of the prism, square cylinder and hemisphere is preliminarily designed and the prism indenter with better conduction force is selected through finite element analysis, which can concentrate the external force in the sensing area to improve the sensitivity. The sensor designed in this paper can realize the measurement of contact force, which provides a certain reference for the field of robot tactile.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 August 2007

C. Zieliński, W. Szynkiewicz, T. Winiarski, M. Staniak, W. Czajewski and T. Kornuta

This paper seeks to develop universal software (a programming framework) enabling the implementation of service robot controllers. The software should distinguish the…

Abstract

Purpose

This paper seeks to develop universal software (a programming framework) enabling the implementation of service robot controllers. The software should distinguish the hardware‐oriented part of the system from the task‐oriented one. Moreover, force, vision as well as other sensors should be taken into account. Multi‐effector systems have to be considered.

Design/methodology/approach

The robot programming framework MRROC++ has been implemented as a hierarchical structure composed of processes, potentially consisting of threads. All of the software is written in an object‐oriented manner using C++ and is supervised by a QNX real‐time operating system. The framework has been verified on several systems executing diverse tasks. Here, a Rubik's cube puzzle‐solving system, consisting of two arms and utilizing force control and visual servos, is presented.

Findings

The presented framework is well suited to tasks requiring two‐handed manipulation with force sensing, visual servoing and online construction of plans of actions. The Rubik's cube puzzle is a reasonable initial benchmark for validation of fundamental service robot capabilities. It requires force sensing and sight coupled with two‐handed manipulation and logical reasoning, as do the majority of service tasks. Owing to the use of force sensing during manipulation, jamming of the faces has always been avoided; however, visual servoing could only cope with slow handing over of the cube due to the volume of computations associated with vision processing.

Research limitations/implications

The proposed software structure does not limit the implementation of service robot controllers. However, some of the specific algorithms used for the solution of the benchmark task (i.e. Rubik's cube puzzle) need to be less time‐consuming.

Practical implications

The MRROC++ robot programming framework can be applied to the implementation of diverse robot controllers executing complex service tasks.

Originality/value

A demanding benchmark task for service robots has been formulated. This task, as well as many others, has been used to validate the MRROC++ robot programming framework which significantly facilitates the implementation of diverse robot systems.

Details

Industrial Robot: An International Journal, vol. 34 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 1996

Thomas J. Petronis

Choosing end‐effectors for robotic applications can be a mind‐boggling task, unless you are familiar with what is available and the appropriate application for each. Presents the…

Abstract

Choosing end‐effectors for robotic applications can be a mind‐boggling task, unless you are familiar with what is available and the appropriate application for each. Presents the XChange Tool Change system, offered by Applied Robotics, which facilitates fast and reliable end‐effector changing. The system has the ability to interface virtually any utility: pneumatics, vacuum, signal level input/output, high voltage, high current electrical power, cooling fluids, hydraulic oil, fibre optics and video signals. With the increasing need for a wider variety of products manufactured in smaller quantities, quick and automatic end‐effector changing is critical.

Details

Industrial Robot: An International Journal, vol. 23 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 April 2007

Mark Lowe, Elizabeth Hood and Mike Ozog

This technical paper aims to provide an overview of thin‐film force sensors, present discussions of various ways these force sensors are used in automated systems, and offer…

Abstract

Purpose

This technical paper aims to provide an overview of thin‐film force sensors, present discussions of various ways these force sensors are used in automated systems, and offer possibilities for future adaptations. Areas of interest are medicine, industry, and consumer products.

Design/methodology/approach

Current uses of thin‐film force sensors are presented based on existing prototypes and research. Current research serves as a springboard to identifying ideas for future research and development.

Findings

Regarding thin‐film force sensors, finds that, thanks to features of current force‐sensing technology, consumers can expect continued introduction of high‐quality and very realistic “feeling” systems.

Originality/value

Presents novel uses of force sensors and explores ideas for future research.

Details

Sensor Review, vol. 27 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2004

Gregory Tholey, Anand Pillarisetti and Jaydev P. Desai

Advancements in robotics have led to significant improvements in robot‐assisted minimally invasive surgery. This paper describes our design of an automated laparoscopic grasper…

1135

Abstract

Advancements in robotics have led to significant improvements in robot‐assisted minimally invasive surgery. This paper describes our design of an automated laparoscopic grasper with tri‐directional force measurement capability at the grasping jaws. The laparoscopic tool can measure normal, lateral, and longitudinal grasping forces while grasping soft tissue. Additionally, the tool can also be used to measure the tissue probing forces. Initial testing of the prototype has shown its ability to accurately characterize artificial tissue samples of varying stiffness and accurately measure the probing forces.

Details

Industrial Robot: An International Journal, vol. 31 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 253