Search results

1 – 10 of over 1000
Article
Publication date: 10 January 2024

Tingwei Gu, Shengjun Yuan, Lin Gu, Xiaodong Sun, Yanping Zeng and Lu Wang

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic…

Abstract

Purpose

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic errors when measuring dynamic signals.

Design/methodology/approach

The dynamic characteristics of the force sensor are analyzed by modal analysis and negative step dynamic force calibration test, and the dynamic mathematical model of the force sensor is identified based on a generalized least squares method with a special whitening filter. Then, a compensation unit is constructed to compensate the dynamic characteristics of the force measurement system, and the compensation effect is verified based on the step and knock excitation signals.

Findings

The dynamic characteristics of the force sensor obtained by modal analysis and dynamic calibration test are consistent, and the time and frequency domain characteristics of the identified dynamic mathematical model agree well with the actual measurement results. After dynamic compensation, the dynamic characteristics of the force sensor in the frequency domain are obviously improved, and the effective operating frequency band is widened from 500 Hz to 1,560 Hz. In addition, in the time domain, the rise time of the step response signal is reduced from 0.29 ms to 0.17 ms, and the overshoot decreases from 26.6% to 9.8%.

Originality/value

An effective dynamic calibration and compensation method is proposed in this paper, which can be used to improve the dynamic performance of the strain-gauge-type force sensor and reduce the dynamic measurement error of the force measurement system.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 August 2023

Haifeng Fang, Yangyang Wei and Shuo Dong

Tactile sensation is an important sensory function for robots in contact with the external environment. To better acquire tactile information about objects, this paper aims to…

Abstract

Purpose

Tactile sensation is an important sensory function for robots in contact with the external environment. To better acquire tactile information about objects, this paper aims to propose a three-layer structure of the interdigital flexible tactile sensor.

Design/methodology/approach

The sensor consists of a bottom electrode layer, a middle pressure-sensitive layer and a top indenter layer. First, the pressure sensitive material, structure design, fabrication process and circuit design of the sensor are introduced. Then, the calibration and performance test of the designed sensor is carried out. Four functions are used to fit and calibrate the relationship between the output voltage of the sensor and the contact force. Finally, the contact force sensing test of different weight objects and the flexible test of the sensor are carried out.

Findings

The performance test results show that the sensitivity of the sensor is 0.93 V/N when it is loaded with 0–3 N and 0.23 V/N when it is loaded with 3–5 N. It shows good repeatability, and the cross-interference between the sensing units is generally low. The contact force sensing test results of different weight objects show that the proposed sensor performs well in contact force. Each part of the sensor is a flexible material, allowing the sensor to achieve bending deformation, so that the sensor can better perceive the contact signs of the grasped object.

Practical implications

The sensor can paste the surface of the paper robot’s gripper to measure the contact force of the grasping object and estimate the contour of the object.

Originality/value

In this paper, a three-layer interdigital flexible tactile sensor is proposed, and the structural parameters of the interdigital electrode are designed to improve the sensitivity and response speed of the sensor. The indenter with three shapes of the prism, square cylinder and hemisphere is preliminarily designed and the prism indenter with better conduction force is selected through finite element analysis, which can concentrate the external force in the sensing area to improve the sensitivity. The sensor designed in this paper can realize the measurement of contact force, which provides a certain reference for the field of robot tactile.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 October 2023

Zhanshe Guo, Xiangdang Liang and Sen Wang

This measuring system is designed to effectively simulate the mechanical reliability of the operated bone fixators. It can be used to pre-evaluate the mechanical performance of…

Abstract

Purpose

This measuring system is designed to effectively simulate the mechanical reliability of the operated bone fixators. It can be used to pre-evaluate the mechanical performance of the operated fixator on the patients, including the static mechanical properties and fatigue properties when the patient walks after the operation.

Design/methodology/approach

It is mainly composed of a one-dimensional platform, a force sensor, a high measuring precision displacement sensor and a servo motor. Loading (which is used to simulate the loading status of the fixators after the operation) of the system is realized by the rotation of the servo motor. It can be read by a high precision force sensor. The relative displacement of the broken bone is obtained by a high precision laser displacement sensor. Corresponding theoretical analysis is also carried out.

Findings

Calibrated results of the system indicate that the output voltage and the measured force of the force sensors possess an excellent linear relationship, and the calculated nonlinear error is just 0.0002%. The maximum relative displacement between the operated broken bone under 700 N axial force is about 1 mm. Fatigue test under 550 N loading for 85,000 cycles also indicates the feasibility of the design.

Originality/value

This device is successfully designed and fabricated to pre-evaluate the mechanical performance of the bone fixators. High precision force sensor and displacement sensor are used to successfully increase the measuring ability of the system. This will offer some help to pertinent researchers.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 May 2023

Ling Weng, Zhuolin Li, Xu Luo, Yuanye Zhang and Yang Liu

This paper aims to design a magnetostrictive tactile sensor for surface depth detection. Unlike the human finger, although most tactile sensors have high sensitivity to pressure…

Abstract

Purpose

This paper aims to design a magnetostrictive tactile sensor for surface depth detection. Unlike the human finger, although most tactile sensors have high sensitivity to pressure, they cannot detect millimeter-level depth information on the surface of objects precisely. To enhance the ability to detect surface depth information, a piezomagnetic sensor combining inverse magnetostrictive effect and bionic structure is developed in this paper.

Design/methodology/approach

A magnetostrictive tactile sensor based on Galfenol [(Fe83Ga17)99.4B0.6] is designed and studied for surface depth measurement. The optimal structure of the sensor is determined by experiment and theory. The test platforms for static and dynamic characteristics are set up. The static and the dynamic sensing performance of the sensor are studied experimentally.

Findings

The sensor can detect 0–2 mm depth change with a sensitivity of 91.5 mV/mm. A resolution of 50 µm can be achieved in the depth direction. In 50 cycles of loading and unloading tests, the maximum error of the sensor output voltage amplitude is only 2.23%.

Originality/value

The sensor can measure the depth information of object surface precisely with good repeatability through sliding motion and provide reference for object surface topography detection.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 August 2023

Feng Shuang, Yang Du, Shaodong Li and Mingqi Chen

This study aims to introduce a multi-configuration, three-finger dexterous hand with integrated high-dimensional sensors and provides an analysis of its design, modeling and…

Abstract

Purpose

This study aims to introduce a multi-configuration, three-finger dexterous hand with integrated high-dimensional sensors and provides an analysis of its design, modeling and kinematics.

Design/methodology/approach

A mechanical design scheme of the three-finger dexterous hand with a reconfigurable palm is proposed based on the existing research on dexterous hands. The reconfigurable palm design enables the dexterous hand to achieve four grasping modes to adapt to multiple grasping tasks. To further enhance perception, two six-axis force and torque sensors are integrated into each finger. The forward and inverse kinematics equations of the dexterous hand are derived using the D-H method for kinematics modeling, thus providing a theoretical model for index analysis. The performance is evaluated using three widely applied indicators: workspace, interactivity of fingers and manipulability.

Findings

The results of kinematics analysis show that the proposed hand has excellent dexterity. Additionally, three different experiments are conducted based on the proposed hand. The performance of the dexterous hand is also verified by fingertip force, motion accuracy test, grasping and in-hand manipulation experiments based on Feix taxonomy. The results show that the dexterous hand has good grasping ability, reproducing 82% of the natural movement of the human hand in daily grasping activities and achieving in-hand manipulations such as translation and rotation.

Originality/value

A novel three-finger dexterous hand with multi-configuration and integrated high-dimensional sensors is proposed. It performs better than the previously designed dexterous hand in actual experiments and kinematic performance analysis.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 October 2023

Peng Wang and Renquan Dong

To improve the position tracking efficiency of the upper-limb rehabilitation robot for stroke hemiplegia patients, the optimization Learning rate of the membership function based…

Abstract

Purpose

To improve the position tracking efficiency of the upper-limb rehabilitation robot for stroke hemiplegia patients, the optimization Learning rate of the membership function based on the fuzzy impedance controller of the rehabilitation robot is propose.

Design/methodology/approach

First, the impaired limb’s damping and stiffness parameters for evaluating its physical recovery condition are online estimated by using weighted least squares method based on recursive algorithm. Second, the fuzzy impedance control with the rule has been designed with the optimal impedance parameters. Finally, the membership function learning rate online optimization strategy based on Takagi-Sugeno (TS) fuzzy impedance model was proposed to improve the position tracking speed of fuzzy impedance control.

Findings

This method provides a solution for improving the membership function learning rate of the fuzzy impedance controller of the upper limb rehabilitation robot. Compared with traditional TS fuzzy impedance controller in position control, the improved TS fuzzy impedance controller has reduced the overshoot stability time by 0.025 s, and the position error caused by simulating the thrust interference of the impaired limb has been reduced by 8.4%. This fact is verified by simulation and test.

Originality/value

The TS fuzzy impedance controller based on membership function online optimization learning strategy can effectively optimize control parameters and improve the position tracking speed of upper limb rehabilitation robots. This controller improves the auxiliary rehabilitation efficiency of the upper limb rehabilitation robot and ensures the stability of auxiliary rehabilitation training.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 July 2023

Kento Nakatsuru, Weiwei Wan and Kensuke Harada

This paper aims to study using a mobile manipulator with a collaborative robotic arm component to manipulate objects beyond the robot’s maximum payload.

Abstract

Purpose

This paper aims to study using a mobile manipulator with a collaborative robotic arm component to manipulate objects beyond the robot’s maximum payload.

Design/methodology/approach

This paper proposes a single-short probabilistic roadmap-based method to plan and optimize manipulation motion with environment support. The method uses an expanded object mesh model to examine contact and randomly explores object motion while keeping contact and securing affordable grasping force. It generates robotic motion trajectories after obtaining object motion using an optimization-based algorithm. With the proposed method’s help, the authors plan contact-rich manipulation without particularly analyzing an object’s contact modes and their transitions. The planner and optimizer determine them automatically.

Findings

The authors conducted experiments and analyses using simulations and real-world executions to examine the method’s performance. The method successfully found manipulation motion that met contact, force and kinematic constraints. It allowed a mobile manipulator to move heavy objects while leveraging supporting forces from environmental obstacles.

Originality/value

This paper presents an automatic approach for solving contact-rich heavy object manipulation problems. Unlike previous methods, the new approach does not need to explicitly analyze contact states and build contact transition graphs, thus providing a new view for robotic grasp-less manipulation, nonprehensile manipulation, manipulation with contact, etc.

Details

Robotic Intelligence and Automation, vol. 43 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of over 1000