Search results

1 – 10 of 64
Article
Publication date: 7 February 2020

Hongli Cao, Ye He, Xiaoan Chen and Xue Zhao

The purpose of this paper is to take transient contact force response, overshoots and steady-state force tracking error problems into account to form an excellent force controller.

Abstract

Purpose

The purpose of this paper is to take transient contact force response, overshoots and steady-state force tracking error problems into account to form an excellent force controller.

Design/methodology/approach

The basic impedance function with a pre-PID tuner is designed to improve the force response. A dynamic adaptive adjustment function that combines the advantages of hybrid impedance and adaptive hybrid impedance control is presented to achieve both force overshoots suppressing and tracking ability.

Findings

The introduced pre-PID tuner impedance function can achieve more than the pure impedance function in aspects of converging to the desired value and reducing the force overshoots. The performance of force overshoots suppression and force tracking error are maintained by introducing the dynamic adaptive sigma adjustment function. The simulation and experimental results both show the achieved control performance by comparing with the previous control methods.

Practical implications

The implementation of the controller is easy and convenient in practical manufacture scenes that require force control using industrial robots.

Originality/value

A superior robot controller adapting to a variety of complex tasks owing to the following characteristics: maintenance of high-accuracy position tracking capability in free-space (basic capabilities of modern industrial robots); maintenance of high speed, stability and smooth contact performance in collision stage; and presentation of high-precision force tracking capability in steady contact.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 March 2022

Chengguo Liu, Ye He, Xiaoan Chen and Hongli Cao

As more and more robots are used in industry, it is necessary for robots to interact with high dynamic environments. For this reason, the purpose of this research is to form an…

Abstract

Purpose

As more and more robots are used in industry, it is necessary for robots to interact with high dynamic environments. For this reason, the purpose of this research is to form an excellent force controller by considering the transient contact force response, overshoot and steady-state force-tracking accuracy.

Design/methodology/approach

Combining the active disturbance rejection control (ADRC) and the adaptive fuzzy PD controller, an enhanced admittance force-tracking controller framework and a well-designed control scheme are proposed. Tracking differentiator balances the contradiction between inertia and jump control signal of the control object. Kalman filter and extended state observer are introduced to obtain purer feedback force signal and uncertainty compensation. Adaptive fuzzy PD controller is introduced to account for transient and steady state performance of the system.

Findings

The proposed controller has achieved successful results through simulation and actual test of 6-axis robot with minimum error.

Practical implications

The controller is simple and practical in real industrial scenarios, where force control by robots is required.

Originality/value

In this research, a new practical force control algorithm is proposed to guarantee the performance of the force controller for robots interacting with high dynamic environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 December 2021

Shijie Dai, Yufeng Zhao, Wenbin Ji, Jiaheng Mu and Fengbao Hu

This paper aims to present a control method to realize the constant force grinding of automobile wheel hub.

Abstract

Purpose

This paper aims to present a control method to realize the constant force grinding of automobile wheel hub.

Design/methodology/approach

A constant force control strategy combined by extended state observer (ESO) and backstepping control is proposed. ESO is used to estimate the total disturbance to improve the anti-interference and stability of the system and Backstepping control is used to improve the response speed of the system.

Findings

The simulation and grinding experimental results show that, compared with the proportional integral differential control and active disturbance rejection control, the designed controller can improve the dynamic response performance and anti-interference ability of the system and can quickly track the expected force and improve the grinding quality of the hub surface.

Originality/value

The main contribution of this paper lies in the proposed of a new constant force control strategy, which significantly improved the stability and precision of grinding force.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 February 2024

Yi Xia, Yonglong Li, Hongbin Zang, Yanpian Mao, Haoran Wang and Jialong Li

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the…

Abstract

Purpose

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the requirements of VBS for small AUVs are analyzed. Second, a modular VBS with high extensibility and easy integration is proposed based on the concepts of generality and interchangeability. Subsequently, a depth-switching controller is proposed based on the modular VBS, which combines the best features of the linear active disturbance rejection controller and the nonlinear active disturbance rejection controller.

Design/methodology/approach

The controller design and endurance of tiny AUVs are challenging because of their low environmental adaptation, limited energy resources and nonlinear dynamics. Traditional and single linear controllers cannot solve these problems efficiently. Although the VBS can improve the endurance of AUVs, the current VBS is not extensible for small AUVs in terms of the differences in individuals and operating environments.

Findings

The switching controller’s performance was examined using simulation with water flow and external disturbances, and the controller’s performance was compared in pool experiments. The results show that switching controllers have greater effectiveness, disturbance rejection capability and robustness even in the face of various disturbances.

Practical implications

A high degree of standardization and integration of VBS significantly enhances the performance of small AUVs. This will help expand the market for small AUV applications.

Originality/value

This solution improves the extensibility of the VBS, making it easier to integrate into different models of small AUVs. The device enhances the endurance and maneuverability of the small AUVs by adjusting buoyancy and center of gravity for low-power hovering and pitch angle control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 April 2022

Shijie Dai, Wenhua Zhang, Wenbin Ji, Yufeng Zhao, Hongwei Zheng, Jiaheng Mu, Pengwei Li and Riqing Deng

Considering the influence of environmental noise and modeling error during the process of the robotic automatic grinding aero-engine blade, this study aims to propose a method…

Abstract

Purpose

Considering the influence of environmental noise and modeling error during the process of the robotic automatic grinding aero-engine blade, this study aims to propose a method based on the extended state observer (ESO) to reduce the fluctuation of normal grinding force.

Design/methodology/approach

First, the measurement range of the six-dimensional force sensor is calibrated according to the maximum acceleration of end-effector and grinding force. Second, the gravity and zero drift compensation model is built to compensate for measurement error. Finally, the switching function is designed based on the difference between the expected grinding force and the actual feedback value. When the value of function stays within the switching band, a nonlinear active disturbance rejection control (ADRC) loop is applied. When the function value reaches outside the switching band, an ESO-based sliding mode control (SMC) loop is applied.

Findings

The simulated and experimental results show that the proposed control method has higher robustness compared with proportion-integral-derivative (PID), Fuzzy PID and ADRC.

Research limitations/implications

The processing parameters of this paper are obtained based on the single-factor experiment without considering the correlation between these variables. A new control strategy is proposed, which is not only used to control the grinding force of blades but also promotes the development of industrial control.

Originality/value

ESO is used to observe environmental interference and modeling errors of the system for real-time compensation. The segment control method consisting of ESO-based SMC and ESO-based ADRC is designed to improve the robustness. The common application of the two parts realizes suppression of fluctuation of grinding force.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 November 2019

Pu Zhao and Yunfei Zhou

Manipulators are often subjected to joint flexibility caused by various causes in industrial applications, such as shaft windup, harmonic drives and bearing deformation. However…

Abstract

Purpose

Manipulators are often subjected to joint flexibility caused by various causes in industrial applications, such as shaft windup, harmonic drives and bearing deformation. However, many industrial robots are only equipped with motor-side encoders because link-side encoders and torque transducers are expensive. Because of joint flexibility and resulted slow response rate, control performance of these manipulators is very limited. Based on this, the purpose of this paper is to use easy-to-install and cheap accelerometers to improve control performance of such manipulators.

Design/methodology/approach

First, a novel tip-acceleration feedback method is proposed to avoid amplifications of approximation errors caused by inversion of the Jacobian matrix. Then, a new control scheme, consisting an artificial neural network, a proportional-derivative (PD) controller and a reference model, is proposed to track motor-side position and suppress link-side vibration.

Findings

By using the proposed tip-acceleration feedback method, each link’s vibration can be suppressed correlatively. Through the networks, smaller motor-side tracking errors can be obtained and unknown dynamics can be compensated. Tracking and convergence performance of the network-based system can be improved by using the additional PD controller.

Originality/value

The originality is based on using accelerometers to improve link-side vibration suppression and control performance of flexible-joint manipulators. The previously used methods need expensive link-side sensors or accurate robot model, which is unavailable for many industrial robots only equipped with motor-side encoders. The report proposed a novel acceleration feedback method and used networks to solve such problems.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 May 2023

Shijie Dai, Shida Li, Wenbin Ji, Ruiqin Wang and Shuyuan Liu

Considering the response lag and viscous slip oscillation of the system caused by cylinder piston friction during automatic polishing of aero-engine blades by a robotic pneumatic…

Abstract

Purpose

Considering the response lag and viscous slip oscillation of the system caused by cylinder piston friction during automatic polishing of aero-engine blades by a robotic pneumatic end-effector, the purpose of this study is to propose a constant force control method with adaptive friction compensation.

Design/methodology/approach

First, the mathematical model of the pneumatic end-effector is established based on the continuous LuGre model, and the static parameters of the LuGre model are identified to verify the necessity of friction compensation. Second, aiming at the problems of difficult identification of dynamic parameters and unmeasurable internal states in the LuGre model, the parameter adaptive law and friction state observer are designed to estimate these parameters online. Finally, an adaptive friction compensation backstepping controller is designed to improve the response speed and polishing force control accuracy of the system.

Findings

Simulation and experimental results show that, compared with proportion integration differentiation, extended state observer-based active disturbance rejection controller and integral sliding mode controller, the proposed method can quickly and effectively suppress the polishing force fluctuation caused by nonlinear friction and significantly improve the blade quality.

Originality/value

The pneumatic force control method combining backstepping control with the friction adaptive compensation based on LuGre friction model is studied, which effectively suppresses the fluctuation of normal polishing force.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 May 2009

Ki‐Jae Song, Jongmin Kim, Jongwoon Yoo, Wansoo Nah, Jaeil Lee and Hyunseop Sim

The purpose of this paper is to present the power noise characteristics of a multilayer printed circuit board (PCB) in which discrete capacitors have been embedded.

Abstract

Purpose

The purpose of this paper is to present the power noise characteristics of a multilayer printed circuit board (PCB) in which discrete capacitors have been embedded.

Design/methodology/approach

Embedded technology has been implemented on a multilayer PCB to enhance the performance and functionality and to decrease the power noise. Decoupling capacitors were directly positioned on the inner power planes of a board, which resulted in low‐loop inductance through the minimized length of the interconnection from the chips to the PCB's power delivery network.

Findings

A low‐noise PCB was successfully designed and fabricated using an embedding process for the discrete decoupling capacitors. It was demonstrated that such an approach offers lower interconnection inductance and quiet noise performance, including highly efficient propagation noise suppression at wideband frequencies.

Research limitations/implications

Most conventional simulation techniques offer expectations for the signal characteristics on the time domain to minimize bit error rates in application systems. Further development work will focus on the integrated simulation models including the equivalent circuits for the transmission line and power noise effects to improve the accuracy of the signal performance.

Originality/value

This paper presents a new approach for improving generating and propagating noise performance through the use of an embedded decoupling capacitor design methodology.

Details

Circuit World, vol. 35 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 25 August 2023

Dongmin Li, Shiming Zhu, Shangfei Xia, Peisi Zhong, Jiaqi Fang and Peng Dai

During drilling in coal mines, sticking of drill rod (referred to as SDR in this work) is a potential threat to underground safety. However, no practical measures to deter SDR…

Abstract

Purpose

During drilling in coal mines, sticking of drill rod (referred to as SDR in this work) is a potential threat to underground safety. However, no practical measures to deter SDR have been developed yet. The purpose of this study is to develop an anti-SDR strategy using proportional-integral-derivative (PID) and compliance control (PIDC). The proposed strategy is compatible with the drilling process currently used in underground coal mines using drill rigs. Therefore, this study aims to contribute to the PIDC strategy for solving SDR.

Design/methodology/approach

A hydraulic circuit to reduce SDR was built based on a load-independent flow distribution system, a PID controller was designed to control the inlet hydraulic pressure of the rotation motor and a typical compliance control approach was adopted to control the feed force and displacement. Moreover, the weight and optimal combination of the alternative admittance control parameters for the feed cylinder were obtained by adopting the orthogonal experiment approach. Furthermore, a fuzzy admittance control approach was proposed to control the feed displacement. Experiments were conducted to test the effectiveness of the proposed method.

Findings

The experimental results indicated that the PIDC strategy was appropriate and effective for controlling the rotation motor and feed cylinder; thus, the proposed method significantly reduces the SDR during drilling operations in underground coal mines.

Research limitations/implications

As the PIDC strategy solves the SDR problem in underground coal mines, it greatly improves the safety of coal mine operation and decreases the power cost. Consequently, it brings the considerable benefits of coal mine production and vast application prospects in other corresponding fields. Actual drilling conditions are difficult to accurately simulate in a laboratory; thus, for future work, drilling experiments can be conducted in actual underground coal mines.

Originality/value

The PIDC-based anti-SDR strategy proposed in this study satisfactorily controls the rotation motor and feed cylinder and facilitates the feed and rotation movements. Furthermore, the tangible novelty of this study results is that it improves the frequency response of the entire drilling system. The drilling process with PIDC decreased the occurrence of SDR by 50%; therefore, the anti-SDR strategy can significantly improve the safety and efficiency of underground coal mining.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 October 2005

Qinglei Hu and Guangfu Ma

To provide an approach to vibration reduction of flexible spacecraft which operates in the presence of various disturbances, model uncertainty and control input non‐linearities…

1031

Abstract

Purpose

To provide an approach to vibration reduction of flexible spacecraft which operates in the presence of various disturbances, model uncertainty and control input non‐linearities during attitude control for spacecraft designers, which can help them analyze and design the attitude control system.

Design/methodology/approach

The new approach integrates the technique of active vibration suppression and the method of variable structure control. The design process is twofold: first design of the active vibration controller by using piezoelectric materials to add damping to the structures in certain critical modes in the inner feedback loop, and then a second feedback loop designed using the variable structure output feedback control (VSOFC) to slew the spacecraft and satisfy the pointing requirements.

Findings

Numerical simulations for the flexible spacecraft show that the precise attitude control and vibration suppression can be accomplished using the derived vibration attenuator and attitude control controller.

Research limitations/implications

Studies on how to control the flywheel (motor) under the action of the friction are left for future work.

Practical implications

An effective method is proposed for the spacecraft engineers planning to design attitude control system for actively suppressing the vibration and at the same time quickly and precisely responding to the attitude control command.

Originality/value

This paper fulfills a useful source of theoretical analysis for the attitude control system design and offers practical help for the spacecraft designers.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 64