Search results

1 – 10 of 325
Article
Publication date: 31 July 2023

Iniya Dinakaran, Chowdhury Sakib-Uz-Zaman, Arafater Rahman and Mohammad Abu Hasan Khondoker

This paper aims to understand the effect of extrusion conditions on the degree of foaming of polylactic acid (PLA) during three-dimensional (3D) printing. It was also targeted to…

Abstract

Purpose

This paper aims to understand the effect of extrusion conditions on the degree of foaming of polylactic acid (PLA) during three-dimensional (3D) printing. It was also targeted to optimize the slicing parameters for 3D printing and to study how the properties of printed parts are influenced by the extrusion conditions.

Design/methodology/approach

This study used a commercially available PLA filament that undergoes chemical foaming. An extrusion 3D printer was used to produce individual extrudates and print samples that were characterized using an optical microscope, scanning electron microscope and custom in-house apparatuses.

Findings

The degree of foaming of the extrudates was found to strongly depend on the extrusion temperature and the material feed speed. Higher temperatures significantly increased the number of nucleation sites for the blowing agent as well as the growth rate of micropores. Also, as the material feed speed increased, the micropores were allowed to grow bigger which resulted in higher degrees of foaming. It was also found that, as the degree of foaming increased, the porous parts printed with optimized slicing parameters were lightweight and thermally less conductive.

Originality/value

This study fills the gap in literature where it examines the foaming behavior of individual extrudates as they are extruded. By doing so, this work distinguishes the effect of extrusion conditions from the effect of slicing parameters on the foaming behavior which enhances the understanding of extrusion of chemically foamed PLA.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 August 2021

Elodie Paquet, Alain Bernard, Benoit Furet, Sébastien Garnier and Sébastien Le Loch

The purpose of this paper is to present a novel methodology to produce a large boat hull with a foam additive manufacturing (FAM) process. To respond to shipping market needs…

Abstract

Purpose

The purpose of this paper is to present a novel methodology to produce a large boat hull with a foam additive manufacturing (FAM) process. To respond to shipping market needs, this new process is being developed. FAM technology is a conventional three-dimensional (3D) printing process whereby layers are deposited onto a high-pressure head mounted on a six-axis robotic arm. Traditionally, molds and masters are made with computer numerical control (CNC) machining or finished by hand. Handcrafting the molds is obviously time-consuming and labor-intensive, but even CNC machining can be challenging for parts with complex geometries and tight deadlines.

Design/methodology/approach

The proposed FAM technology focuses on the masters and molds, that are directly produced by 3D printing. This paper describes an additive manufacturing technology through which the operator can create a large part and its tools using the capacities of this new FAM technology.

Findings

The study shows a comparison carried out between the traditional manufacturing process and the additive manufacturing process, which is illustrated through an industrial case of application in the manufacturing industry. This work details the application of FAM technology to fabricate a 2.5 m boat hull mold and the results show the time and cost savings of FAM in the fabrication of large molds.

Originality/value

Finally, the advantages and drawbacks of the FAM technology are then discussed and novel features such as monitoring system and control to improve the accuracy of partly printed are highlighted.

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 September 2023

Dileep Bonthu, Bharath H.S., Siddappa I. Bekinal, P. Jeyaraj and Mrityunjay Doddamani

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical…

Abstract

Purpose

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses.

Design/methodology/approach

Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria.

Findings

The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend.

Originality/value

The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 October 2018

Xiaowei Zhu, Yanqiu Chen, Yu Liu, Yongqiang Deng, Changyu Tang, Weilian Gao, Jun Mei, Junhua Zhao, Tong Liu and Jian Yang

The purpose of this paper is to provide additive manufacturing-based solutions for preparation of elastomeric foam with broaden compressive stress plateau.

Abstract

Purpose

The purpose of this paper is to provide additive manufacturing-based solutions for preparation of elastomeric foam with broaden compressive stress plateau.

Design/methodology/approach

Mechanic models are developed for obtaining designs of foam cell units with enhanced elastic buckling. An experimental approach is taken to fabricate the foams based on direct ink writing technique. Experimental and simulation data are collected to assist understanding of our proposals and solutions.

Findings

A simple tetragonal structured elastomeric foam is proposed and fabricated by direct ink writing, in which its cell unit is theoretically designed by repeating every four filament layers. The foam exhibits a broader stress plateau, because of the pronounced elastic buckling under compressive loading as predicted by the authors’ mechanic modeling. A two-stage stress plateaus as observed in the foam, being attributed to the dual elastic buckling of the cell units along two lateral directions of the XY plane during compression.

Research limitations/implications

Future work should incorporate more microscopic parameters to tune the elastomeric foam for mechanic performance testing on linear elastic deformation and densification of polymer matrix.

Practical implications

Additive manufacturing offers an alternative to fabricate elastomeric foam with controlled cell unit design and therefore mechanics. Our results comment on its broad space for development such superior cushioning or damping material in the fields of vibration and energy absorption.

Originality/value

This work has contributed to new knowledge on preparation of high performance elastomeric foam by providing a better understanding on its cell structure, being printed using direct ink writing machines.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 15 February 2022

Md. Hazrat Ali, Gani Issayev, Essam Shehab and Shoaib Sarfraz

In recent years, 3D printing technologies have been widely used in the construction industry. 3D printing in construction is very attractive because of its capability of process…

3379

Abstract

Purpose

In recent years, 3D printing technologies have been widely used in the construction industry. 3D printing in construction is very attractive because of its capability of process automation and the possibility of saving labor, waste materials, construction time and hazardous procedures for humans. Significant researches were conducted to identify the performance of the materials, while some researches focused on the development of novel techniques and methods, such as building information modeling. This paper aims to provide a detailed overview of the state-of-the-art of currently used 3D printing technologies in the construction areas and global acceptance in its applications.

Design/methodology/approach

The working principle of additive manufacturing in construction engineering (CE) is presented in terms of structural design, materials used and theoretical background of the leading technologies that are used to construct buildings and structures as well as their distinctive features.

Findings

The trends of 3D printing processes in CE are very promising, as well as the development of novel materials, will gain further momentum. The findings also indicate that the digital twin (DT) in construction technology would bring the industry a step forward toward achieving the goal of Industry 5.0.

Originality/value

This review highlights the prospects of digital manufacturing and the DT in construction engineering. It also indicates the future research direction of 3D printing in various constriction sectors.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 November 2017

Arzu Vuruskan and Susan P. Ashdown

The design and testing of clothing for activewear requires complex assessments of the suitability of the clothing when the body is in motion. The purpose of this paper is to…

Abstract

Purpose

The design and testing of clothing for activewear requires complex assessments of the suitability of the clothing when the body is in motion. The purpose of this paper is to investigate full body 3D scanning of active body poses in order to develop “watertight” digital models and half-scale dress forms to facilitate design, pattern making and fit analyses. Issues around creating a size set of scans in order to facilitate fit testing of activewear across a size range were also explored.

Design/methodology/approach

Researchers experimented to discover effective methods for 3D body capture in the cycling position and reconstruction of the body in a reliable way. In total, 25 cyclists were scanned and size representatives were selected from these participants. Methods of creating half-scale forms were developed that make optimum use of modern materials and technologies. Half-scale dress forms were created in two active positions in a range of sizes for fit testing and design. A set of half-scale and full-scale bike shorts in two styles were manufactured and fit tested on the half-scale forms compared to fit testing on the scan participants to test validity of this method of assessing fit.

Findings

Issues in capturing and reconstructing areas occluded in the scanning process, and reconstructing the interface with the bicycle seat were addressed. Active digital forms were developed across the size range, from which both digital avatars and physical mannequins were developed for pattern development and fit testing. The production and use of precisely half-scaled tools for garment testing was achieved and validated by comparing fit test results in active positions on the half-scale forms and on participants who were scanned to create these forms.

Originality/value

Design modifications for active positions to date are based on linear measurements alone, which do not define the 3D body adequately. Despite much research using body scanners, only limited data exist on the body in active poses, and the concept of creating half-scale forms by scanning fit models throughout the size range in active body positions is a novel concept. The progress made in resolving material and process experiments in creating the actual half-scale forms, and testing their suitability for fit testing provides a basis for further research aimed at developing similar dress forms for other activewear garments.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 December 2021

Pushkar Prakash Kamble, Subodh Chavan, Rajendra Hodgir, Gopal Gote and K.P. Karunakaran

Multi-jet deposition of the materials is a matured technology used for graphic printing and 3 D printing for a wide range of materials. The multi-jet technology is fine-tuned for…

Abstract

Purpose

Multi-jet deposition of the materials is a matured technology used for graphic printing and 3 D printing for a wide range of materials. The multi-jet technology is fine-tuned for liquids with a specific range of viscosity and surface tension. However, the use of multi-jet for low viscosity fluids like water is not very popular. This paper aims to demonstrate the technique, particularly for the water-ice 3 D printing. 3 D printed ice parts can be used as patterns for investment casting, templates for microfluidic channel fabrication, support material for polymer 3 D printing, etc.

Design/methodology/approach

Multi-jet ice 3 D printing is a novel technique for producing ice parts by selective deposition and freezing water layers. The paper confers the design, embodiment and integration of various subsystems of multi-jet ice 3 D printer. The outcomes of the machine trials are reported as case studies with elaborate details.

Findings

The prismatic geometries are realized by ice 3 D printing. The accuracy of 0.1 mm is found in the build direction. The part height tends to increase due to volumetric expansion during the phase change.

Originality/value

The present paper gives a novel architecture of the ice 3 D printer that produces the ice parts with good accuracy. The potential applications of the process are deliberated in this paper.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2023

Jitendra Kumar and Sushant Negi

This study aims to deal with developing composite filaments and investigating the tribological behavior of additively manufactured syntactic foam composites. The primary objective…

Abstract

Purpose

This study aims to deal with developing composite filaments and investigating the tribological behavior of additively manufactured syntactic foam composites. The primary objective is to examine the suitability of the cenosphere (CS; 0–30 Wt.%) to develop a high-quality lightweight composite structure with improved abrasion strength.

Design/methodology/approach

CS/polyethylene terephthalate glycol (PETG) composite feedstock filaments under optimized extrusion conditions were developed, and a fused filament fabrication process was used to prepare CS-filled PETG composite structures under optimal printing conditions. Significant parameters such as CS (0–30 Wt.%), sliding speed (200–800 rpm) and typical load (10–40 N) were used to minimize the dry sliding wear rate and coefficient of friction for developed composites.

Findings

The friction coefficient and specific wear rate (SWR) are most affected by the CS weight percentage and applied load, respectively. However, nozzle temperature has the least effect on the friction coefficient and SWR. A mathematical model predicts the composite material’s SWR and coefficient of friction with 87.5% and 95.2% accuracy, respectively.

Practical implications

Because of their tailorable physical and mechanical properties, CS/PETG lightweight composite structures can be used in low-density and damage-tolerance applications.

Social implications

CS, an industrial waste material, is used to develop lightweight syntactic foam composites for advanced engineering applications.

Originality/value

CS-reinforced PETG composite filaments were developed to fabricate ultra-light composite structures through a 3D printing routine.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 June 2023

Zhiwei Jiao, Zhongyu Zhuang, Li Hu, Ce Sun, Yuan Yu and Weimin Yang

The purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose…

Abstract

Purpose

The purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose deformation depends on altered structure or dimensions, and to provide new dimensions for the design of silicone soft structures.

Design/methodology/approach

A soft material three-dimensional printing platform with a dual-channel printing capability was designed and built. Using the material extrusion method, material screening was first performed using single-channel printing, followed by dual-channel-regulated printing experiments on products having different hardness and modulus values.

Findings

The proportion of additives has an effect on the accuracy of the printed product. Material screening revealed that Sylgard 527 and SE 1700 could be printed without additives. The hardness and mechanical properties of products are related to the percentage in their composition of hard and soft materials. The hardness of the products could be adjusted from 26A to 42A and the Young’s modulus from 0.875 to 2.378 Mpa.

Originality/value

Existing silicone products molded by casting or printing are mostly composed of a single material, whose uniform hardness and modulus cannot meet the demand for differentiated deformation in the structure. The existing multihardness silicone material printing method has the problems of long material mixing time and slow hardness switching and complicated multi-extrusion head switching. In this study, a simple, low-cost and responsive material extrusion-based hardness programmable preparation method for silicone materials is proposed.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 325