Search results

1 – 10 of over 3000
Article
Publication date: 5 March 2018

Ling Weng, Ting Wang, Pei-Hai Ju and Li-Zhu Liu

This paper aims to develope the electromagnetic interference shielding materials with high performance. To develop advanced polymer-based electromagnetic interference shielding…

Abstract

Purpose

This paper aims to develope the electromagnetic interference shielding materials with high performance. To develop advanced polymer-based electromagnetic interference shielding materials with rather high temperature stability, good processability and moderate mechanical properties, the authors chose the polyimide (PI) foam as matrix and ferriferrous oxide (Fe3O4) as fillers to prepare the composite foams with lightweight and rather good electromagnetic interference shielding performance.

Design/methodology/approach

Some polyimide nanocomposite foams with Fe3O4 as fillers have been prepared by in situ dispersion and foaming with pyromellitic dianhydride (PMDA) and isocyanate (PAPI) as raw materials and water as foaming agent. By varying the Fe3O4 contents, a series of PI/Fe3O4 nanocomposite foams with fine microstructures and high thermal stability were obtained. The structure and performances of nanocomposite foams were examined, and the effects of Fe3O4 on the microstructure and properties of composite foams were investigated.

Findings

This work demonstrates that PI/Fe3O4 foams could be fabricated by thermally treating the polyimide foam intermediates with Fe3O4 nanoparticles through a blending reaction of precursors. The final PI/Fe3O4 composite foams maintained the excellent thermal property and showed a super paramagnetic behaviour, which has a positive effect on the improvement of electromagnetic shielding performance.

Research limitations/implications

In this paper, the effects of Fe3O4 on the performances of PI/Fe3O4 composite foam were reported. It provided an effective methodology for the preparation of polymer/Fe3O4 nanocomposite foams, which hold great promise towards the potential application in the areas of electromagnetic shielding materials.

Originality/value

A series of PI/Fe3O4 composite foams with different contents of Fe3O4 were prepared by blending reaction of the precursors. The effects of Fe3O4 on the structures and properties of PI/Fe3O4 composite foam were discussed in detail.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 2008

V. Rizov and A. Mladensky

This article presents an approach for assessing the damage resistance of H30 rigid foam subjected to local static loading. The main goal of the experimental part of this paper is…

Abstract

This article presents an approach for assessing the damage resistance of H30 rigid foam subjected to local static loading. The main goal of the experimental part of this paper is to obtain the loaddisplacement response of foam beam specimens under static indentation by steel cylindrical indentors for both loading (indentation) and unloading stages. The instant residual dent magnitude is also measured in the testing. The nonlinear character of the mechanical behavior and the formation of a residual dent (after unloading) are attributed to local crushing of the foam in the zone directly under the indentation area. A visual inspection of a lateral surface of the foam specimens after indentation tests revealed that the local damage underneath the indentor consists of crushed and highly compacted foam, while the rest of the specimen is almost undeformed. A two‐dimensional numerical model is developed to simulate the static indentation response using the ABAQUS computer code. No overall bending of the foam specimens is assumed. The finite element modeling procedure takes into account both physical and geometrical non‐linearities. In order to simulate the plastic part of the response, the model employs the *CRUSHABLE FOAM and *CRUSHABLE FOAM HARDENING options. The modeling procedure is capable of analyzing indentation as well as unloading of foam beam specimens. Thus, the instant residual dent can be predicted. Results generated by this model exhibit good correlation with indentation tests data, thus substantiating its validity.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Details

Airport Design and Operation
Type: Book
ISBN: 978-1-78441-869-4

Article
Publication date: 9 January 2024

Chunfu Wu, Guorui Ye, Yonghong Zhao, Baowen Ye, Tao Wang, Liangmo Wang and Zeming Zhang

Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper…

Abstract

Purpose

Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper aims to propose a novel auxetic honeycomb structure manufactured using selective laser melting and study the enhanced mechanical performance when subjected to in-plane compression loading.

Design/methodology/approach

A novel composite structure was designed and fabricated on the basis of an arrowhead auxetic honeycomb and filled with polyurethane foam. The deformation mechanism and mechanical responses of the structure with different structural parameters were investigated experimentally and numerically. With the verified simulation models, the effects of parameters on compression strength and energy absorption characteristics were further discussed through parametric analysis.

Findings

A good agreement was achieved between the experimental and simulation results, showing an evidently enhanced compression strength and energy absorption capacity. The interaction between the auxetic honeycomb and foam reveals to exploit a reinforcement effect on the compression performance. The parametric analysis indicates that the composite with smaller included angel and higher foam density exhibits higher plateau stress and better specific energy absorption, while increasing strut thickness is undesirable for high energy absorption efficiency.

Originality/value

The results of this study served to demonstrate an enhanced mechanical performance for the foam filled auxetic honeycomb, which is expected to be exploited with applications in aerospace, automobile, civil engineering and protective devices. The findings of this study can provide numerical and experimental references for the design of structural parameters.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 August 2023

P.S. Liu, S. Song and J.X. Sun

The purpose of this paper is mainly to know: (1) the sound absorption coefficient of porous composite structures constituted by a new kind of lightweight ceramic foam and…

Abstract

Purpose

The purpose of this paper is mainly to know: (1) the sound absorption coefficient of porous composite structures constituted by a new kind of lightweight ceramic foam and perforated plate; (2) the availability of an equivalent porous material model, recently proposed by the present author, to these composite structures in sound absorption.

Design/methodology/approach

A kind of lightweight ceramic foam with bulk density of 0.38–0.56 g·cm-3 was produced by means of molding, drying and sintering. The effect of stainless steel perforated plate on sound absorption performance of the ceramic foam was investigated by means of JTZB absorption tester.

Findings

The results indicate that the sound absorption performance could be obviously changed by adding the stainless steel perforated plate in front of the porous samples and the air gap in back of the porous samples. Adding the perforated plate to the porous sample with a relatively large pore size, the sound absorption performance could be evidently improved for the composite structure. When the air gap is added to the composite structure, the first absorption peak shifts to the lower frequency, and the sound absorption coefficient could increase in the low frequency range.

Originality/value

Based on the equivalent porous material model and the “perforated plate with air gap” model, the sound absorption performance of the composite structures can be simulated conveniently to a great extent by using Johnson-Champoux-Allard model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 July 2023

Iniya Dinakaran, Chowdhury Sakib-Uz-Zaman, Arafater Rahman and Mohammad Abu Hasan Khondoker

This paper aims to understand the effect of extrusion conditions on the degree of foaming of polylactic acid (PLA) during three-dimensional (3D) printing. It was also targeted to…

Abstract

Purpose

This paper aims to understand the effect of extrusion conditions on the degree of foaming of polylactic acid (PLA) during three-dimensional (3D) printing. It was also targeted to optimize the slicing parameters for 3D printing and to study how the properties of printed parts are influenced by the extrusion conditions.

Design/methodology/approach

This study used a commercially available PLA filament that undergoes chemical foaming. An extrusion 3D printer was used to produce individual extrudates and print samples that were characterized using an optical microscope, scanning electron microscope and custom in-house apparatuses.

Findings

The degree of foaming of the extrudates was found to strongly depend on the extrusion temperature and the material feed speed. Higher temperatures significantly increased the number of nucleation sites for the blowing agent as well as the growth rate of micropores. Also, as the material feed speed increased, the micropores were allowed to grow bigger which resulted in higher degrees of foaming. It was also found that, as the degree of foaming increased, the porous parts printed with optimized slicing parameters were lightweight and thermally less conductive.

Originality/value

This study fills the gap in literature where it examines the foaming behavior of individual extrudates as they are extruded. By doing so, this work distinguishes the effect of extrusion conditions from the effect of slicing parameters on the foaming behavior which enhances the understanding of extrusion of chemically foamed PLA.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 July 2023

Kiran Kumar K, Kotresha Banjara and Kishan Naik

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal…

Abstract

Purpose

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal pipe.

Design/methodology/approach

In this study, the heater is embedded on the pipe’s circumference and is assigned with known heat input. To enhance the heat transfer, metal foam of 10 pores per inch with porosity 0.95 is filled into the pipe. In filling, two kinds of arrangements are made, in the first arrangement, the metal foam is filled adjacent to the inner wall of the pipe [Model (1)–(3)], and in the second arrangement, the foam is located at the center of the pipe [Models (4)–(6)]. So, six different models are examined in this research for a fluid velocity ranging from 0.7 to7 m/s under turbulent flow conditions. Darcy Extended Forchheimer is combined with local thermal non-equilibrium models for forecasting the flow and heat transfer features via metal foams.

Findings

The numerical methodology implemented in this study is confirmed by comparing the outcomes with the experimental outcomes accessible in the literature and found a fairly good agreement between them. The application of the second law of thermodynamics via metal foams is the novelty of current investigation. The evaluation of thermodynamic performance includes the parameters such as mean exergy-based Nusselt number (Nue), rate of irreversibility, irreversibility distribution ratio (IDR), merit function (MF) and non-dimensional exergy destruction (I*). In all the phases, Models (1)–(3) exhibit better performance than Models (4)–(6).

Practical implications

The present study helps to enhance the heat transfer performance with the introduction of metal foams and reveals the importance of available energy (exergy) in the system which helps in arriving at optimum design criteria for the thermal system.

Originality/value

The uniqueness of this study is to analyze the impact of discrete metal foam filling on exergy and irreversibility in a pipe under turbulent flow conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 August 2022

Aya Qatawna, Rabab Allouzi and Samih Qaqish

The primary objective of this study is to produce one-way slabs made of LWFC with low density and sufficient compressive strength suitable for structural purpose then investigate…

Abstract

Purpose

The primary objective of this study is to produce one-way slabs made of LWFC with low density and sufficient compressive strength suitable for structural purpose then investigate their flexural behavior under various types of reinforcement and thickness of the slab and the influence of addition of PP fibers reinforcement on the mechanical behavior of reinforced concrete slabs. The specimens were tested using four-point loading. The results concerning load capacity, deflection and failure mode and crack pattern for each specimen were obtained. Also, an analytical investigation of PP fiber and GFG contribution on the flexural behavior of foamed concrete slabs is studied to investigate the significant role of PP fiber on the stress distribution in reinforced foam concrete and predict the flexural moment capacity.

Design/methodology/approach

The materials used in this study are cement, fine aggregate (sand), water, PP fibers, foaming agent, chemical additives if required, steel reinforcing rebars and glass fiber grid. The combination of these constituent materials will be used to produce foamed concrete in this research Then this study will present the experimental program of one-way foamed concrete slabs including slabs reinforced with GFR grids and another with steel reinforcements. The slabs will be tested in the laboratory under static loading conditions to investigate their ultimate capacities. The flexural behavior is to the interest of the slabs reinforced with GFR grids reinforcements in comparison with that of one with steel reinforcing rebars. Three groups are considered. (1) Group I: two slabs of PP fiber foamed concrete with minimum required reinforcements. (2) Group II: two slabs of PP fiber foamed concrete with glass fiber grids. (3) Group III: two slabs of PP fiber foamed concrete with the minimum required reinforcements and glass fiber grids.

Findings

The experimental results proved the effectiveness and efficiency of this the new system in producing a low density of concrete below 1900 kg/m3 had a corresponding strength of about 17 MPa at least. Besides, the presence of PP fibers had a noticeable improvement on the flexural strength values for all the examined slabs. It was found that the specimens reinforced with steel reinforcement mesh carried higher flexural capacity compared to these reinforced with GFG only. The specimens reinforced with GFG exhibited the lowest flexural capacity due to GFG separation from the concrete substrate. Also, an analytical investigation to predict the flexural strength of all tested specimens was carried out. The analytical results were agreed with the experimental results. Therefore, LWFC can be used as a substitute lightweight concrete material for the production of structural concrete applications in the construction industries today.

Research limitations/implications

Foamed concrete is a wide field to discuss. To achieve the objectives of the project, the study is focused on the foamed concrete with the following limitations: (1) because the aim of this research is to produce foamed concrete suitable for structural purposes, it is decided to produce mixes within the density range 1300–1900 kg/m3. (2) Simply-supported slabs are of considered. (3) This study also looks out by using GFR and without it.

Originality/value

The main objectives of this study were producing structural foamed concrete slabs and investigate their flexural response for residential uses.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 15 December 2022

Ibrahim Yavuz, Ercan Şimşir and Alev Yildirim

Metal foams are a structural and functional composite materials that have received wide attention due to their specific structures and properties. The aim of this study is to…

Abstract

Purpose

Metal foams are a structural and functional composite materials that have received wide attention due to their specific structures and properties. The aim of this study is to investigate the mechanical properties of syntactic foam by using expanded silica gel with the spacer technique.

Design/methodology/approach

In this research paper, the vacuum casting production method was used to produce metal syntactic foams including AlSi12 and AlSi8Cu3 matrix and expanded silica gel fillers with diameters of 2–4.75 mm and 4.75–5.6 mm.

Findings

As a result of the study, it was observed that as the foam densities increased, the compressive strength values of the samples increased due to the increasing volume fraction of the metallic matrix. Samples with the AlSi12 matrix showed higher compressive strength than samples with the AlSi8Cu3 matrix.

Originality/value

The originality of the study is the comparison of two different main matrix alloys (AlSi12 and AlSi8Cu3) and different pores using expanded silica gel.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 3000