Search results

1 – 10 of 369
Article
Publication date: 27 October 2023

Jacek Mieloszyk, Andrzej Tarnowski and Tomasz Goetzendorf-Grabowski

Designing new aircraft that are state-of-the-art and beyond always requires the development of new technologies. This paper aims to present lessons learned while designing…

Abstract

Purpose

Designing new aircraft that are state-of-the-art and beyond always requires the development of new technologies. This paper aims to present lessons learned while designing, building and testing new UAVs in the configuration of the flying wing. The UAV contains a number of aerodynamic devices that are not obvious solutions and use the latest manufacturing technology achievements, such as 3D printing.

Design/methodology/approach

The design solutions were applied on an airworthy aircraft and checked during test flights. The process was first conducted on the smaller UAV, and based on the test outcomes, improvements were made and then applied on the larger version of the UAV, where they were verified.

Findings

A number of practical findings were identified. For example, the use of 3D printing technology for manufacturing integrated pressure ports, investigation of the adverse yaw effect on the flying wing configuration and the effectiveness of winglet rudders in producing yawing moment.

Practical implications

All designed devices were tested in practice on the flying aircraft. It allowed for improved aircraft performance and handling characteristics. Several of the technologies used improved the speed and quality of aerodynamic device design and manufacturing, which also influences the reliability of the aircraft.

Originality/value

The paper presents how 3D printing technology can be utilized for manufacturing of aerodynamic devices. Specially developed techniques for control surface design, which can affect adverse yaw problem and aircraft handling characteristics, were described.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 August 2021

Tagir Z. Muslimov and Rustem A. Munasypov

This paper aims to propose a multi-agent approach to adaptive control of fixed-wing unmanned aerial vehicles (UAVs) tracking a moving ground target. The approach implies that the…

Abstract

Purpose

This paper aims to propose a multi-agent approach to adaptive control of fixed-wing unmanned aerial vehicles (UAVs) tracking a moving ground target. The approach implies that the UAVs in a single group must maintain preset phase shift angles while rotating around the target so as to evaluate the target’s movement more accurately. Thus, the controls should ensure that the UAV swarm follows a moving circular path whose center is the target while also attaining and maintaining a circular formation of a specific geometric shape; and the formation control system is capable of self-tuning because the UAV dynamics is uncertain.

Design/methodology/approach

This paper considers two interaction architectures: an open-chain where each UAV only interacts with its neighbors; and a cooperative leader, where the leading UAV is involved in attaining the formation. The cooperative controllers are self-tuned by fuzzy model reference adaptive control (MRAC).

Findings

Using open-chain decentralized architecture allows to have an unlimited number of aircraft in a formation, which is in line with the swarm behavior concept. The approach was tested for efficiency and performance in various scenarios using complete nonlinear flying-wing UAV models equipped with configured standard autopilot models.

Research limitations/implications

Assume the target follows a rectilinear trajectory at a constant speed. The speed is supposed to be known in advance. Another assumption is that the weather is windless.

Originality/value

In contrast to known studies, this one uses Lyapunov guidance vector fields that are direction- and magnitude-nonuniform. The overall cooperative controller structure is based on a decentralized and centralized consensus.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 May 2017

Yalin Pan, Jun Huang, Feng Li and Chuxiong Yan

The purpose of this paper is to propose a robust optimization strategy to deal with the aerodynamic optimization issue, which does not need a large sum of information on the…

Abstract

Purpose

The purpose of this paper is to propose a robust optimization strategy to deal with the aerodynamic optimization issue, which does not need a large sum of information on the uncertainty of input parameters.

Design/methodology/approach

Interval numbers were adopted to describe the uncertain input, which only requires bounds and does not necessarily need probability distributions. Based on the method, model outputs were also regarded as intervals. To identify a better solution, an order relation was used to rank interval numbers.

Findings

Based on intervals analysis method, the uncertain optimization problem was transformed into nested optimization. The outer optimization was used to optimize the design vector, and inner optimization was used to compute the interval of model outputs. A flying wing aircraft was used as a basis for uncertainty optimization through the suggested optimization strategy, and optimization results demonstrated the validity of the method.

Originality/value

In aircraft conceptual design, the uncertain information of design parameters are often insufficient. Interval number programming method used for uncertainty analysis is effective for aerodynamic robust optimization for aircraft conceptual design.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 10 June 2021

Jaeyoung Cha, Juyeol Yun and Ho-Yon Hwang

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with…

1908

Abstract

Purpose

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with different types of engines.

Design/methodology/approach

The vehicle configuration was devised considering the dimensions and operational restrictions of the roads, runways and parking lots in South Korea. A folding wing design was adopted for road operations and parking. The propulsion designs considered herein use gasoline, diesel and hybrid architectures for longer-range missions. The sizing point of the roadable PAV that minimizes the wing area was selected, and the rate of climb, ground roll distance, cruise speed and service ceiling requirements were met. For various engine types and mission profiles, the performances of differently sized PAVs were compared with respect to the MTOW, wing area, wing span, thrust-to-weight ratio, wing loading, power-to-weight ratio, brake horsepower and fuel efficiency.

Findings

Unlike automobiles, the weight penalty of the hybrid system because of the additional electrical components reduced the fuel efficiency considerably. When the four engine types were compared, matching the total engine system weight, the internal combustion (IC) engine PAVs had better fuel efficiency rates than the hybrid powered PAVs. Finally, a gasoline-powered PAV configuration was selected as the final design because it had the lowest MTOW, despite its slightly worse fuel efficiency compared to that of the diesel-powered engine.

Research limitations/implications

Although an electric aircraft powered only by batteries most capitalizes on the operating cost, noise and emissions benefits of electric propulsion, it also is most hampered by range limitations. Air traffic integration or any safety, and noise issues were not accounted in this study.

Practical implications

Aircraft sizing is a critical aspect of a system-level study because it is a prerequisite for most design and analysis activities, including those related to the internal layout as well as cost and system effectiveness analyses. The results of this study can be implemented to design a PAV.

Social implications

This study can contribute to the establishment of innovative PAV concepts that can alleviate today’s transportation problems.

Originality/value

This study compared the sizing results of PAVs with hybrid engines with those having IC engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 January 2019

Jacek Mieloszyk, Andrzej Tarnowski, Michal Kowalik, Rafal Perz and Witold Rzadkowski

Additive manufacturing technology, also commonly called as 3D printing technology, is entering rapidly into the aerospace world and seems to be its future. Many manufacturing…

Abstract

Purpose

Additive manufacturing technology, also commonly called as 3D printing technology, is entering rapidly into the aerospace world and seems to be its future. Many manufacturing processes are replaced by this technology because the ease of use, low costs and new possibilities to make complicated parts. However, there are only few solutions which present manufacturing of structurally critical parts.

Design/methodology/approach

Complete process of deriving loads, design of fitting geometry, numerical validation, manufacturing and strength testing was presented. The emphasis was made to show specific features of 3D technology in printed fittings for UAV.

Findings

The research confirms that the technology can be used for the application of fittings manufacturing. Attention needs to be paid, during the design process, to account for specific features of the 3D printing technology, which is described in details.

Practical implications

Without a doubt, additive manufacturing is useful for manufacturing complicated parts within limited time and with reduction cost. It was also shown that the manufactured parts can be used for highly loaded structures.

Originality/value

The paper shows how additive manufacturing technology can be used to produce significantly loaded parts of airplanes’ structure. Only few such examples were presented till now.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 February 2019

Yalin Pan and Jun Huang

The purpose of this study is to analyze influence of airfoil profile on lateral-directional flying quality of flying wing aircraft. The lateral-directional stability is always…

Abstract

Purpose

The purpose of this study is to analyze influence of airfoil profile on lateral-directional flying quality of flying wing aircraft. The lateral-directional stability is always insufficient for aircraft with the layout due to the absence of vertical stabilizer. A flying wing aircraft with double-swept wing is used as research object in the paper.

Design/methodology/approach

The 3D model is established for the aircraft with flying wing layout, and parametric modeling is carried out for airfoil mean camber line of the aircraft to analyze lateral-directional stability of the aircraft with different camber line parameters. To increase computational efficiency, vortex lattice method is adopted to calculate aerodynamic coefficients and aerodynamic derivatives of the aircraft.

Findings

It is found from the research results that roll mode and spiral mode have a little effect on lateral-directional stability of the aircraft but Dutch roll mode is the critical factor affecting flying quality level of such aircraft. Even though changes of airfoil mean line parameters can greatly change assessment parameters of aircraft lateral-directional flying quality, that is kind of change cannot have a fundamental impact on level of flying quality of the aircraft. In case flat shape parameters are determined, the airfoil profile has a limited impact on Dutch roll mode.

Originality/value

Influences of airfoil profile on lateral-directional flying quality of aircraft with double-swept flying wing layout are revealed in the thesis and some important rules and characteristics are also summarized to lay a theoretical basis for design of airfoil and flight control system of aircraft with the layout.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 October 2018

Agnieszka Kwiek

The purpose of this research is a study into a mathematical approach of a tailless aircraft dynamic stability analysis. This research is focused on investigation of influence of…

Abstract

Purpose

The purpose of this research is a study into a mathematical approach of a tailless aircraft dynamic stability analysis. This research is focused on investigation of influence of elevons (elevator) on stability derivatives and consequently on the aircraft longitudinal dynamic stability. The main research question is to determine whether this impact should be taken into account on the conceptual and preliminary stage of the analysis of the longitudinal dynamic stability.

Design/methodology/approach

Aerodynamic coefficients and longitudinal stability derivatives were computed by Panukl (panel methods). The analysis of the dynamic stability of the tailless aircraft was made by the Matlab code and SDSA package.

Findings

The main result of the research is a comparison of the dynamic stability of the tailless aircraft for different approaches, with and without the impact of elevator deflection on the trim drag and stability derivatives.

Research limitations/implications

This paper presents research that mostly should be considered on the preliminary stage of aircraft design and dynamic stability analysis. The impact of elevons deflection on the aircraft moment of inertia has been omitted.

Practical implications

The results of this research will be useful for the further design of small tailless unmanned aerial vehicles (UAVs).

Originality/value

This research reveals that in case of the analysis of small tailless UAVs, the impact of elevons deflection on stability derivatives is bigger than the impact of a Mach number. This impact should be taken into consideration, especially for a phugoid mode.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 June 2022

Ying-Jie Guan, Yong-Ping Li and Peng Zeng

To solve the problems of short battery life and low transportation safety of logistics drones, this paper aims to propose a design of logistics unmanned aerial vehicles (UAV) wing

Abstract

Purpose

To solve the problems of short battery life and low transportation safety of logistics drones, this paper aims to propose a design of logistics unmanned aerial vehicles (UAV) wing with a composite ducted rotor, which combines fixed wing and rotary-wing.

Design/methodology/approach

This UAV adopts tiltable ducted rotor combined with fixed wing, which has the characteristics of fast flight speed, large carrying capacity and long endurance. At the same time, it has the hovering and vertical take-off and landing capabilities of the rotary-wing UAV. In addition, aerodynamic simulation analysis of the composite model with a fixed wing and a ducted rotor was carried out, and the aerodynamic influence of the composite model on the UAV was analyzed under different speeds, fixed wing angles of attack and ducted rotor speeds.

Findings

The results were as follows: when the speed of the ducted rotor is 2,500 rpm, CL and K both reach maximum values. But when the speed exceeds 3,000 rpm, the lift will decrease; when the angle of attack of the fixed wing is 10° and the rotational speed of the ducted rotor is about 3,000 rpm, the aerodynamic characteristics of the wing are better.

Originality/value

The novelty of this work comes from a composite wing design of a fixed wing combined with a tiltable ducted rotor applied to the logistics UAVs, and the aerodynamic characteristics of the design wing are analyzed.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 June 2023

Antonio Bacciaglia and Alessandro Ceruti

Timing constraints affect the manufacturing of traditional large-scale components through the material extrusion technique. Thus, researchers are exploring using many independent…

Abstract

Purpose

Timing constraints affect the manufacturing of traditional large-scale components through the material extrusion technique. Thus, researchers are exploring using many independent and collaborative heads that may work on the same part simultaneously while still producing an appealing final product. The purpose of this paper is to propose a simple and repeatable approach for toolpath planning for gantry-based n independent extrusion heads with effective collision avoidance management.

Design/methodology/approach

This research presents an original toolpath planner based on existing slicing software and the traditional structure of G-code files. While the computationally demanding component subdivision task is assigned to computer-aided design and slicing software to build a standard G-code, the proposed algorithm scans the conventional toolpath data file, quickly isolates the instructions of a single extruder and inserts brief pauses between the instructions if the non-priority extruder conflicts with the priority one.

Findings

The methodology is validated on two real-life industrial large-scale components using architectures with two and four extruders. The case studies demonstrate the method's effectiveness, reducing printing time considerably without affecting the part quality. A static priority strategy is implemented, where one extruder gets priority over the other using a cascade process. The results of this paper demonstrate that different priority strategies reflect on the printing efficiency by a factor equal to the number of extrusion heads.

Originality/value

To the best of the authors’ knowledge, this is the first study to produce an original methodology to efficiently plan the extrusion heads' trajectories for a collaborative material extrusion architecture.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 August 2001

Fabrizio Scarpa

615

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 73 no. 4
Type: Research Article
ISSN: 0002-2667

1 – 10 of 369