Search results

1 – 10 of over 1000
Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2011

Witold Mazgaj

The aim of this paper is to present a new relatively simple model of the rotational magnetization process in anisotropic sheets.

Abstract

Purpose

The aim of this paper is to present a new relatively simple model of the rotational magnetization process in anisotropic sheets.

Design/methodology/approach

The surface of a sample of an anisotropic sheet is divided into an assumed number of specified directions. To each direction a certain hysteresis loop, the so‐called direction hysteresis, is assigned. The parameters of the proposed model are calculated on the basis of such values as the saturation flux density, the residual flux density (remanence), and the coercive force. It is also necessary to take into account the anisotropy constant and also the distribution function of the grains in the sample of the given anisotropic material.

Findings

The model of the rotational magnetization process of soft ferromagnetic materials takes into account two fundamental phenomena: the irreversible domain wall movements and the rotations of the flux density vectors from the easy magnetization axes. This model can also be used for the modelling of the axial magnetization process.

Practical implications

The proposed model can be used in numerical calculations of the rotational magnetization in magnetic circuits of electrical machines for any work conditions. However, for the comprehensive calculation of the magnetic field distribution this model should be completed with eddy current equations. Eddy currents influence magnetic field distribution in electric steel sheets.

Originality/value

A new model of the rotational magnetization process in anisotropic sheets is proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 August 2007

Damijan Miljavec and Bogomir Zidarič

This study aims to calculate eddy current losses in permanent magnets of BLDC machine in the generator mode of operation with no‐load.

Abstract

Purpose

This study aims to calculate eddy current losses in permanent magnets of BLDC machine in the generator mode of operation with no‐load.

Design/methodology/approach

Stator slot openings and special design of the stator poles cause changes in the magnetic flux density changes in permanent magnets. The stator windings are not connected to an outer source and no currents flow in them. The induced eddy currents in permanent magnets are dependent solely on the stator geometry. Analytical approach to calculate the eddy current density distribution in permanent magnets is based on known distribution of magnetic flux density in the air‐gap of BLDC. The magnetic flux density distribution is obtained from magneto‐static finite element model of BLDC. For verification of analytical approach the eddy current density distribution in permanent magnets is also calculated by magneto‐transient finite element model of BLDC.

Findings

The eddy current losses in PM obtained with the FEM indicate additional heating of the BLDC machine at high rotational speeds even when it operates at no load. When some special stator designs (the side of the air gap) are needed, the losses in PMs and their heating increase.

Research limitations/implications

To get more precise results, the proposed analytical method for eddy current losses calculation in PM should be further analyzed. More geometric parameters of the BLDC design should be introduced to analytical formulations, especially those which affect variations in reluctance.

Practical implications

When some special stator designs (the side of the air gap) are needed, the losses in PMs should be observed. This is particularly recommended at higher rotation velocities. Any kind of magnetic flux density change induces eddy currents and together with them also power losses. These losses give rise to additional heating of PM. With this, the temperature‐dependent working characteristic of PM (second quadrant of the B‐H curve) moves toward the coordinate origin point. The overall machine performance is reduced. The presented work gives the view about happenings in permanent magnets regarding induced eddy current losses. It is a useful tool for fast estimation and reduction of eddy current losses in PM due to stator geometry.

Originality/value

The value of the paper is the closed view about happenings in permanent magnets regarding induced eddy currents and the calculation of eddy current losses in rotor permanent magnets of BLDC due to stator design. The originality is in the analytical approach to calculate the eddy current losses based only on known magneto‐static flux density distribution in air‐gap of BLDC.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 July 2013

Björn Riemer, Enno Lange and Kay Hameyer

Depending on the load the flux‐density distribution inside power transformers core shows significant local variations due to stray fluxes which enter the transformer core. As…

Abstract

Purpose

Depending on the load the flux‐density distribution inside power transformers core shows significant local variations due to stray fluxes which enter the transformer core. As saturation of the core has to be avoided the flux‐density distribution has to be determined early in the design stage of the transformer. This paper seeks to address these issues.

Design/methodology/approach

To determine the load dependent flux‐density distribution the operating point of the transformer is calculated considering linear and non‐linear material properties. The operating point is determined using a linearised lumped parameter model of the transformer under various load conditions. Considering non‐linear material properties the inductance matrix depends on the operating point and will be extracted by means of the FEM whenever the magnetic energy within the transformer changes notably.

Findings

This paper presents a numerical stable approach to calculate the operating point of a transformer by using the magnetic flux linkage as state variable for the coupled field problem.

Research limitations/implications

The proposed approach uses a fixed time‐step to update the lumped parameters by means of the FEM. This results in long simulation times. In further research it is planned to implement an adaptive time‐step method based on the change of the magnetic energy.

Originality/value

A numerical stable approach to calculate the operating point of a transformer by using the magnetic flux linkage as state variable for the coupled field problem is proposed. The methodology is applied to a 2D model of a three‐phase transformer. However, it also can be applied to 3D FE models. Based on the calculated operating point, the flux‐density distribution can be determined and several post‐processing methods can be executed (e.g. determination of core losses, …).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 8 April 2024

Oussama-Ali Dabaj, Ronan Corin, Jean-Philippe Lecointe, Cristian Demian and Jonathan Blaszkowski

This paper aims to investigate the impact of combining grain-oriented electrical steel (GOES) grades on specific iron losses and the flux density distribution within a…

Abstract

Purpose

This paper aims to investigate the impact of combining grain-oriented electrical steel (GOES) grades on specific iron losses and the flux density distribution within a single-phase magnetic core.

Design/methodology/approach

This paper presents the results of finite-element method (FEM) simulations investigating the impact of mixing two different GOES grades on losses of a single-phase magnetic core. The authors used different models: a 3D model with a highly detailed geometry including both saturation and anisotropy, as well as a simplified 2D model to save computation time. The behavior of the flux distribution in the mixed magnetic core is analyzed. Finally, the results from the numerical simulations are compared with experimental results.

Findings

The specific iron losses of a mixed magnetic core exhibit a nonlinear decrease with respect to the GOES grade with the lowest losses. Analyzing the magnetic core behavior using 2D and 3D FEM shows that the rolling direction of the GOES grades plays a critical role on the nonlinearity variation of the specific losses.

Originality/value

The novelty of this research lies in achieving an optimum trade-off between the manufacturing cost and the core efficiency by combining conventional and high-performance GOES grade in a single-phase magnetic core.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1128

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 April 2023

Lezhi Ye, Xuanjie Song and Chang Yue

Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement…

83

Abstract

Purpose

Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement stroke, position calibration error and low production efficiency in optical alignment, this paper aims to propose a new wafer magnetic alignment technology (MAT) which is based on tunnel magneto resistance effect. MAT can realize micro distance alignment and reduces the design and manufacturing difficulty of wafer bonding equipment.

Design/methodology/approach

The current methods and existing problems of wafer optical alignment are introduced, and the mechanism and realization process of wafer magnetic alignment are proposed. Micro magnetic column (MMC) marks are designed on the wafer by the semiconductor manufacturing process. The mathematical model of the space magnetic field of the MMC is established, and the magnetic field distribution of the MMC alignment is numerically simulated and visualized. The relationship between the alignment accuracy and the MMC diameter, MMC remanence, MMC thickness and sensor measurement height was studied.

Findings

The simulation analysis shows that the overlapping double MMCs can align the wafer with accuracy within 1 µm and can control the bonding distance within the micrometer range to improve the alignment efficiency.

Originality/value

Magnetic alignment technology provides a new idea for wafer bonding alignment, which is expected to improve the accuracy and efficiency of wafer bonding.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 24 August 2018

Xianhai Pang, Haijun Zhang, Shuhong Wang and Hao Jing

The purpose of this paper is to study the saturation and nonlinear performance of magnetic field in the air gap of switched reluctance motor (SRM).

170

Abstract

Purpose

The purpose of this paper is to study the saturation and nonlinear performance of magnetic field in the air gap of switched reluctance motor (SRM).

Design/methodology/approach

The analytical method of sub-domain combined with the saturation compensation method is used to determine the nonlinear distribution of air gap magnetic field in SRM. Also, the resolutions of the two-dimensional (2D) Laplace’s equation and Poisson’s equation in polar coordinates are used to obtain the simplified expression of magnetic flux density.

Findings

For verifying the effectiveness of analytical model, the results are compared with those obtained from the 2D finite element method (FEM). The influence of magnetic saturation is taken into account by associating the sub-domain analysis result with the nonlinear B-H properties of stator and rotor iron. The magnetic flux density in radial and tangential direction considering the saturation effect may be calculated accurately. It can be seen that one can easily determine the linear analytical results accurately, whereas it is difficult to determine the magnetic flux density with saturation influence; especially at some local positions, there is a larger difference between analytical and FE model due to the complex boundary conditions.

Practical implications

This paper presents the development and optimization design of high-performance SRM.

Originality/value

The magnetic saturation may be taken into account for the SRM and analytical models support to simulated system performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2009

Takashi Todaka, Kenji Nakanoue and Masato Enokizono

The purpose of this paper is to reduce computation time of magnetic characteristic analysis considering 2D vector magnetic properties.

Abstract

Purpose

The purpose of this paper is to reduce computation time of magnetic characteristic analysis considering 2D vector magnetic properties.

Design/methodology/approach

The paper proposes a complex E&S modelling with assumption that both flux density and field strength waveforms are sinusoidal. The computation time of the complex E&S modeling becomes 1/10 in comparison with one of the conventional E&S modeling. This modeling is applicable up to 1.4 T of the local magnetic flux density condition in the case of non‐oriented magnetic materials.

Findings

In the results of the magnetic field analyses of a linear‐induction motor model core by means of the finite element method taking account of the complex E&S modeling, the distributions of the flux density and the field strength were able to be approximately analyzed and their phase differences in space were represented. The results of the magnetic characteristic analysis of the linear‐induction motor showed that the teeth‐end shape had large influences on the thrust and cogging.

Practical implications

This technique helps to know approximately local vector magnetic properties in core materials. This modeling is very useful for magnetic core design taking account of the simplified 2D vector magnetic properties.

Originality/value

The method presented in this paper enables expression of the simplified 2D vector magnetic properties in magnetic field analyses. The computation time can be considerably reduced in comparison with the conventional method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 2006

M. Dems, K. Komeza, S. Wiak, T. Stec and M. Kikosicki

To investigate the use of amorphous iron as the stator core material to increase the efficiency of electric machines in serialised production.

Abstract

Purpose

To investigate the use of amorphous iron as the stator core material to increase the efficiency of electric machines in serialised production.

Design/methodology/approach

In the design process of a new structure for the induction motor with a stator core made from amorphous iron it is necessary to apply the circuit method and the field‐circuit method. The use of the circuit method allows quick calculations of many versions of the designed motor, but the use of the field‐circuit method is necessary for verification of the maximal value of the flux density in the entire area of the cross‐sections of the motor core.

Findings

A new construction for the small induction motor with the stator core made from amorphous iron was designed based on the classical structure of the four‐pole induction motor. In the designed motor a decrease of the electric energy costs was observed, which is much bigger than the material costs, and in effect lower total costs for the designed motor were obtained.

Practical implications

According to necessary changes in the motor construction, due to lower saturation limit for this material, the authors obtained a significant increase in the motor efficiency and a decrease in the total cost of the motor. The development of a new technology allows the cutting of amorphous magnetic materials and the production of electric motors from them.

Originality/value

This paper shows the possibility of using amorphous magnetic materials for stator core of small induction machines and the advantages of such construction for obtaining more efficient motor construction.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000