Search results

1 – 10 of 328
To view the access options for this content please click here
Article
Publication date: 4 November 2013

Hai-Hong Ma, Qiu-Sheng Song, YuanHao Xu and Wei Yao

– The purpose of this paper is to modify the photostability of organic fluorescent dyes and to develop and evaluate a route of their derived polymeric fluorescent dyes.

Abstract

Purpose

The purpose of this paper is to modify the photostability of organic fluorescent dyes and to develop and evaluate a route of their derived polymeric fluorescent dyes.

Design/methodology/approach

A series of novel polymeric fluorescent dyes were prepared using 3-(2-benzimidazolyl)-7-(diethylamino)-coumarin (disperse yellow 8GFF, abbreviated as 8GFF) and polyethylene glycol (PEG) as raw materials. First, an intermediate of carboxyl functioned 8GFF was prepared by condensation reaction of 8GFF and pyromellitic dianhydride; and then the polymeric fluorescent dyes were synthesized by reacting PEG with the condensate intermediate.

Findings

FTIR, UV-vis, and PL showed that the polymeric fluorescent dyes had been successfully synthesised, and the photostability of organic fluorescent dyes was improved significantly.

Research limitations/implications

In the present work, the polymeric fluorescent dyes had been successfully synthesized, and the photostability of organic fluorescent dyes was improved significantly. This methodology can be employed to prepare novel polymeric fluorescent materials and to improve the photostability of organic dyes for various applications.

Practical implications

Polycondensable dyes offer a new area of material science which can be widely used in coloured polymer materials production.

Originality/value

The method developed in the study reported in this paper provided a new strategy to develop new types of polycondensable dyes materials with fluorescent property.

Details

Pigment & Resin Technology, vol. 42 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 7 November 2016

Galal H. Elgemeie and Doaa M. Masoud

This paper aims to focus on the most popular technique nowadays, the use of microwave irradiation in organic synthesis; in a few years, most chemists will use microwave…

Abstract

Purpose

This paper aims to focus on the most popular technique nowadays, the use of microwave irradiation in organic synthesis; in a few years, most chemists will use microwave energy to heat chemical reactions on a laboratory scale. Also, many scientists use microwave technology in the industry. They have turned to microwave synthesis as a frontline methodology for their projects. Microwave and microwave-assisted organic synthesis (MAOS) has emerged as a new “lead” in organic synthesis.

Design/methodology/approach

Using microwave radiation for synthesis and design of fluorescent dyes is of great interest, as it decreases the time required for synthesis and the synthesized dyes can be applied to industrial scale.

Findings

The technique offers many advantages, as it is simple, clean, fast, efficient and economical for the synthesis of a large number of organic compounds. These advantages encourage many chemists to switch from the traditional heating method to microwave-assisted chemistry.

Practical implications

This review highlights applications of microwave chemistry in organic synthesis for fluorescent dyes. Fluorescents are a fairly new and very heavily used class of organics. These materials have many applications, as a penetrant liquid for crack detection, synthetic resins, plastics, printing inks, non-destructive testing and sports ball dyeing.

Originality/value

The aim value of this review is to define the scope and limitation of microwave synthesis procedures for the synthesis of novel fluorescent dyes via a simple and economic way.

Details

Pigment & Resin Technology, vol. 45 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 4 November 2013

Yufei Xiu, Kezhong Wang, Chaoxia Wang, Kashif Javed, Shaohai Fu and Anli Tian

– The aim of this paper was to prepare a stable fluorescent disperse yellow paste by wet grinding process by adding naphthalene sulphonic derivative dispersing agent.

Abstract

Purpose

The aim of this paper was to prepare a stable fluorescent disperse yellow paste by wet grinding process by adding naphthalene sulphonic derivative dispersing agent.

Design/methodology/approach

The dispersants 2-naphthalenesulphonic acid (NNO), naphthalene-sulphonic acid (MF) and benzyl naphthalene sulphonate formaldehyde condensate (CNF) were used to disperse the yellow dye. The particle size of the paste was characterised by particle size analyser. The paste centrifugal stability, diffusion properties, morphology and thermal properties were also tested for assessing its stability which could be helpful to prepare inks with good stability.

Findings

The particle sizes of dye pastes with dispersing agent NNO, MF and CNF were 161.1, 150.0 and 136.0 nm, respectively, after grinding for 6 h. The dye paste grinded with dispersing agent CNF presented good centrifugal and thermal properties. TEM images demonstrated that the morphologies of dye pastes grinded with dispersing agent MF and CNF were homogeneous nearly spherical nanoparticle and rarely generated agglomeration and precipitation.

Originality/value

The paste used for aqueous inkjet ink exhibited excellent thermal stability.

Details

Pigment & Resin Technology, vol. 42 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 3 July 2017

Rui Huang, Kangni Shen, Teng Xu and Yongjia Shen

The purpose of this paper is to explore the optic performance of extended stilbene derivative.

Abstract

Purpose

The purpose of this paper is to explore the optic performance of extended stilbene derivative.

Design/methodology/approach

Five steps were adopted to synthesise novel 4, 4′-bis (2-cyanostyryl) stilbene, which contained three vinyl units in the skeleton (S3E). The structure of S3E was characterised by 1H NMR and EI-MS. Its absorption and emission spectra were also given.

Findings

Compared to C.I. Fluorescent Brightener 199, which contains two vinyl units in the skeleton, S3E showed obvious bathochromic shifts in both UV-VIS and FL spectra. The maximum absorption wavelength and fluorescent wavelength were at 390 nm and 464 nm, respectively, with Stoke’s shift of 74 nm. The absolute fluorescence quantum yield was 0.42. Thermogravimetric analysis (TGA) revealed that the weight loss of S3E was less than 5 per cent at 300 °C. Moreover, the light resistance test showed that S3E in PVC plate can keep the good fluorescent intensity for more than seven days exposed to xenon light. Therefore, it is believed that S3E could satisfy the requirements of colouring PVC as a fluorescent dye.

Practical implications

S3E can be used as a candidate of fluorescent dye in the development of thermoplastics.

Originality/value

The present paper designed and synthesised a new derivative of stilbene, which showed its preference to be a colourant of thermoplastics.

Details

Pigment & Resin Technology, vol. 46 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 25 February 2014

Yufei Xiu, Qiankun Shen, Fei Fan and Chaoxia Wang

A disperse fluorescent yellow paste was mixed with a dispersant naphthalene sulfonic derivative via wet grinding process to prepare thermal transfer ink with good…

Abstract

Purpose

A disperse fluorescent yellow paste was mixed with a dispersant naphthalene sulfonic derivative via wet grinding process to prepare thermal transfer ink with good fluorescence. The paper aims to discuss these issues.

Design/methodology/approach

The surface tension, viscosity, pH value, zeta potential, stability and the morphology of ink samples were tested after the storing process.

Findings

The morphology of paste was homogeneous nearly spherical nanoparticles and the particle size was about 100 nm from the transmission electron microscopy (TEM), which was similar to the average particle size obtained from the particle size analyser.

Research limitations/implications

The paste particle size was 126.8 nm after storing at 50°C for one week. The addition of diethylene glycol was conducive to high fluorescent reflectivity and gave good line image quality both in warp and weft directions due to the low viscosity. Inkjet printed polyester fabrics achieved excellent rubbing, laundering and thermal subliming fastnesses.

Originality/value

The polyester fabrics thermal transferred with the ink contained diethylene glycol represented higher fluorescent reflectivity and gave better line image quality both in warp and weft directions. The inkjet printed polyester fabrics showed excellent colour reproducibility and all the fastnesses, including rubbing, laundering and thermal subliming, were higher than Grade 4.

Details

Pigment & Resin Technology, vol. 43 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 1 April 1973

H.H. Lavell

The other day I visited an exhibition of paintings in an art gallery. It was not too well lit, and one painting stood out immediately because of a small but extremely…

Abstract

The other day I visited an exhibition of paintings in an art gallery. It was not too well lit, and one painting stood out immediately because of a small but extremely brightly coloured area on it. As I went closer I saw that the bright area was painted with a daylight fluorescent colour which was applied over a white background. The artist stood nearby, but I did not have the heart to tell him that, if he ever became famous, his fame would outlast the bright fluorescent area in his painting.

Details

Pigment & Resin Technology, vol. 2 no. 4
Type: Research Article
ISSN: 0369-9420

To view the access options for this content please click here
Article
Publication date: 1 July 1964

G.A. Grizzell

FLAW detection processes utilizing dye penetrants are now extensively used throughout the aircraft industry. They are a logical development of the lard oil and chalk…

Abstract

FLAW detection processes utilizing dye penetrants are now extensively used throughout the aircraft industry. They are a logical development of the lard oil and chalk method popular in the early days, a system which is still occasionally used for economic reasons and where only the more obvious flaws are of significance. Briefly, this method consists of immersing the parts to be tested in hot lard oil, wiping off the excess, and then applying a film of chalk; oil which has seeped into surface flaws eventually exudes out and is absorbed into the chalk, revealing itself as typical oily stains. It was reasoned that if lard oil were substituted by a penetrating medium which was highly coloured, the exudations would then become much more obvious and from then on intensive research programmes were started which have culminated in the very efficient processes now available.

Details

Aircraft Engineering and Aerospace Technology, vol. 36 no. 7
Type: Research Article
ISSN: 0002-2667

To view the access options for this content please click here
Article
Publication date: 25 January 2008

Vinod Kumar Khanna

This paper aims to discover the novelties in biosensor fabrication brought about by breakthroughs in nanomaterials and process techniques, the resulting enhancement in…

Abstract

Purpose

This paper aims to discover the novelties in biosensor fabrication brought about by breakthroughs in nanomaterials and process techniques, the resulting enhancement in biosensor functionalities, new applications and future possibilities.

Design/methodology/approach

The impact of nanotechnology on biosensor advancement has been examined. Different directions of biosensor research in the nano era have been highlighted. These include the efforts made through nanotechnology to improve the performance parameters of the existing biosensors, and for implementation of innovative biosensor concepts.

Findings

Nanotechnology is a key technology in biosensor development. It has permeated into the biosensor field and brought in its wake far‐reaching changes.

Practical implications

Biosensor science and engineering are central to virtually all aspects of life including medical diagnostics, environmental monitoring and biotechnological process control. Therefore, the progress in biosensors brought about by nanotechnology influences one's everyday life.

Originality/value

The study helps in understanding the applications of nanotechnology in fabricating a new generation of biosensors with improved characteristics. It provides information of value to those involved in biosensor research.

Details

Sensor Review, vol. 28 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 13 November 2007

N.S.E. Ahmed, R.M. El‐Shishtawy and M.M. Kamel

To explore the use of power ultrasound as an environmentally friendly heating technology for the pre‐treatment of linen fibres with sodium perborate as the halogen free…

Abstract

Purpose

To explore the use of power ultrasound as an environmentally friendly heating technology for the pre‐treatment of linen fibres with sodium perborate as the halogen free oxidising agent and to study the impact of this process on its dyeability with reactive dyes.

Design/methodology/approach

Exploiting power ultrasound in the wet processes of linen fibres was made in two steps, i.e. ultrasonic pre‐treatment with sodium perborate followed by ultrasonic dyeing with reactive dyes. Therefore, comparative studies between conventional and ultrasonic techniques as well as the different factors that may affect these processes were investigated. The effect of the pre‐treatment on fibre fine structure using X‐ray diffraction technique was also investigated.

Findings

The results of the increase of whiteness index indicate that ultrasonic pre‐treatment was better at all studied treatment times and at low temperature. X‐ray diffraction studies on blank, ultrasonically and conventionally pre‐treated linen fibres have shown 70.41, 67.51 and 64.90 per cent crystallinity, respectively. The dyeing of the pre‐treated fibres with Reactive Red 24 was simultaneously carried out under both ultrasonic and conventional heating conditions to study the effect of dye concentrations at different dyeing temperatures. The colour strength values obtained for the dyed samples using ultrasonic at 50°C were slightly higher than those obtained using conventional heating at 80°C. Ultrasonic enhancement in the pre‐treatment and dyeing in terms of the percent increase of colour strength of the dyed fabric was estimated to be 157.94 per cent higher than that of conventional heating method. The results of wet fastness properties of the dyed fibres using ultrasonic revealed improvement relative to those obtained using conventional heating method.

Research limitations/implications

The improved wet processes of linen fibres suggest further investigation to exploit power ultrasound in the wet processes of cellulosic fibres at low temperature using different classes of halogen free bleaching agents and dyeing with different classes of heat‐requiring reactive dyes. Also, this work may inspire the synthesis of new generation of heat‐requiring reactive dyes.

Practical implications

The work presented has significant potential industrial application for cleaner production in textile industries.

Originality/value

The present study of linen pre‐treatment with non‐toxic total chlorine free oxidising agent and its dyeability with reactive dyes using power ultrasound is novel and could be used in the wet processes of linen fibres.

Details

Pigment & Resin Technology, vol. 36 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 1 September 2000

Index by subjects, compiled by K.G.B. Bakewell covering the following journals: Facilities Volumes 8‐17; Journal of Property Investment & Finance Volumes 8‐17; Property…

Abstract

Index by subjects, compiled by K.G.B. Bakewell covering the following journals: Facilities Volumes 8‐17; Journal of Property Investment & Finance Volumes 8‐17; Property Management Volumes 8‐17; Structural Survey Volumes 8‐17.

Details

Facilities, vol. 18 no. 9
Type: Research Article
ISSN: 0263-2772

1 – 10 of 328