Search results

1 – 10 of 27
Article
Publication date: 25 April 2024

Huda A. Al-Ghamdi

A highly selective cyanide phenoxazine-based fluorescence chemosensor POH was created to detect cyanide (CN) ions.

Abstract

Purpose

A highly selective cyanide phenoxazine-based fluorescence chemosensor POH was created to detect cyanide (CN) ions.

Design/methodology/approach

A malonitrile was added to a phenoxazine fluorophore to make this widely available chemosensor. By fluorescence spectroscopy, the sensor POH showed turn-off fluorescence emission for CN with 2:1 binding stoichiometry in CH3CN/H2O (90:10 v/v) medium.

Findings

The detection limits for CN were 9.8 × 10−9 M, which were much lower than WHO standards. NMR and FT-IR investigations backed up the suggested sensor POH mechanism.

Originality/value

The detection CN method should be applicable in a number of situations, where the CN anion for fresh water and drinking water has to be quickly and accurately analyzed.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Nibu Babu Thomas, Lekshmi P. Kumar, Jiya James and Nibu A. George

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to…

Abstract

Purpose

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to nanosensors has led to significant progress in diverse fields, such as biomedicine, environmental monitoring and industrial process control. This led to better and more efficient detection and monitoring of physical and chemical properties at better resolution, opening new horizons in the development of novel technologies and applications for improved human health, environment protection, enhanced industrial processes, etc.

Design/methodology/approach

In this paper, the authors discuss the application of citation network analysis in the field of nanosensor research and development. Cluster analysis was carried out using papers published in the field of nanomaterial-based sensor research, and an in-depth analysis was carried out to identify significant clusters. The purpose of this study is to provide researchers to identify a pathway to the emerging areas in the field of nanosensor research. The authors have illustrated the knowledge base, knowledge domain and knowledge progression of nanosensor research using the citation analysis based on 3,636 Science Citation Index papers published during the period 2011 to 2021.

Findings

Among these papers, the bibliographic study identified 809 significant research publications, 11 clusters, 556 research sector keywords, 1,296 main authors, 139 referenced authors, 63 nations, 206 organizations and 42 journals. The authors have identified single quantum dot (QD)-based nanosensor for biological applications, carbon dot-based nanosensors, self-powered triboelectric nanogenerator-based nanosensor and genetically encoded nanosensor as the significant research hotspots that came to the fore in recent years. The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Research limitations/implications

The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Originality/value

This is a novel bibliometric analysis in the area of “nanomaterial based sensor,” which is carried out in CiteSpace software.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 22 September 2023

Nengsheng Bao, Yuchen Fan, Chaoping Li and Alessandro Simeone

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could…

Abstract

Purpose

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could avoid disruptive consequences caused by the lack of timely maintenance. Currently, inspection operations are mostly carried out manually, resulting in time-consuming processes prone to health and safety hazards. To overcome such issues, this paper proposes a machine vision-based inspection system aimed at automating the oil leakage detection for improving the maintenance procedures.

Design/methodology/approach

The approach aims at developing a novel modular-structured automatic inspection system. The image acquisition module collects digital images along a predefined inspection path using a dual-light (i.e. ultraviolet and blue light) illumination system, deploying the fluorescence of the lubricating oil while suppressing unwanted background noise. The image processing module is designed to detect the oil leakage within the digital images minimizing detection errors. A case study is reported to validate the industrial suitability of the proposed inspection system.

Findings

On-site experimental results demonstrate the capabilities to complete the automatic inspection procedures of the tested industrial equipment by achieving an oil leakage detection accuracy up to 99.13%.

Practical implications

The proposed inspection system can be adopted in industrial context to detect lubricant leakage ensuring the equipment and the operators safety.

Originality/value

The proposed inspection system adopts a computer vision approach, which deploys the combination of two separate sources of light, to boost the detection capabilities, enabling the application for a variety of particularly hard-to-inspect industrial contexts.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 4 March 2024

Betul Gokkaya, Erisa Karafili, Leonardo Aniello and Basel Halak

The purpose of this study is to increase awareness of current supply chain (SC) security-related issues by providing an extensive analysis of existing SC security solutions and…

Abstract

Purpose

The purpose of this study is to increase awareness of current supply chain (SC) security-related issues by providing an extensive analysis of existing SC security solutions and their limitations. The security of SCs has received increasing attention from researchers, due to the emerging risks associated with their distributed nature. The increase in risk in SCs comes from threats that are inherently similar regardless of the type of SC, thus, requiring similar defence mechanisms. Being able to identify the types of threats will help developers to build effective defences.

Design/methodology/approach

In this work, we provide an analysis of the threats, possible attacks and traceability solutions for SCs, and highlight outstanding problems. Through a comprehensive literature review (2015–2021), we analysed various SC security solutions, focussing on tracking solutions. In particular, we focus on three types of SCs: digital, food and pharmaceutical that are considered prime targets for cyberattacks. We introduce a systematic categorization of threats and discuss emerging solutions for prevention and mitigation.

Findings

Our study shows that the current traceability solutions for SC systems do not offer a broadened security analysis and fail to provide extensive protection against cyberattacks. Furthermore, global SCs face common challenges, as there are still unresolved issues, especially those related to the increasing SC complexity and interconnectivity, where cyberattacks are spread across suppliers.

Originality/value

This is the first time that a systematic categorization of general threats for SC is made based on an existing threat model for hardware SC.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 19 October 2022

Fatimah A.M. Al-Zahrani

This paper aims to prepare a new donor–π–acceptor (D–π–A) and acceptor–π– D–π–A (A–π–D–π–A) phenothiazine (PTZ) in conjugation with vinyl isophorone (PTZ-1 and PTZ-2) were…

Abstract

Purpose

This paper aims to prepare a new donor–π–acceptor (D–π–A) and acceptor–π– D–π–A (A–π–D–π–A) phenothiazine (PTZ) in conjugation with vinyl isophorone (PTZ-1 and PTZ-2) were designed and their molecular shape, electrical structures and characteristics have been explored using the density functional theory (DFT). The results satisfactorily explain that the higher conjugative effect resulted in a smaller high occupied molecular orbital–lowest unoccupied molecular orbital gap (Eg). Both compounds show intramolecular charge transfer (ICT) transitions in the ultraviolet (UV)–visible range, with a bathochromic shift and higher absorption oscillator strength, as determined by DFT calculations.

Design/methodology/approach

The produced PTZ-1 and PTZ-2 sensors were characterized using various spectroscopic methods, including Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy (1H/13CNMR). UV–visible absorbance spectra of the generated D–π–A PTZ-1 and A–π–D–π–A PTZ-2 dyes were explored in different solvents of changeable polarities to illustrate positive solvatochromism correlated to intramolecular charge transfer.

Findings

The emission spectra of PTZ-1 and PTZ-2 showed strong solvent-dependent band intensity and wavelength. Stokes shifts were monitored to increase with the increase of the solvent polarity up to 4122 cm−1 for the most polar solvent. Linear energy-solvation relationship was applied to inspect solvent-dependent Stokes shifting. Quantum yield (ф) of PTZ-1 and PTZ-2 was also explored. The maximum UV–visible absorbance wavelengths were detected at 417 and 419 nm, whereas the fluorescence intensity was monitored at 586 and 588 nm.

Originality/value

The PTZ-1 and PTZ-2 dyes leading to colorimetric and emission spectral changes together with a color shift from yellow to red.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 October 2023

Bozong Jiao, Baofeng Pan and Naisheng Guo

The purpose of this article is to determine the parameters of the preparation process for devulcanized and pyrolytic crumb rubber modified asphalt (DCRMA) and then study the…

Abstract

Purpose

The purpose of this article is to determine the parameters of the preparation process for devulcanized and pyrolytic crumb rubber modified asphalt (DCRMA) and then study the rheological and microscopic properties of DCRMA through experiments.

Design/methodology/approach

In this study, a new preparation process for DCRMA was developed, then the penetration, softening point and viscosity tests were employed to determine the parameters of the preparation process. The crumb rubber (CR) solubility, Fluorescence microscopy (FM), Fourier Transform Infrared (FTIR) spectroscopy and thermogravimetric analysis tests were conducted to verify the devulcanized and pyrolytic effectiveness of the preparation process. Furthermore, dynamic shear rheometer and bending beam rheometer were used to characterize the high and low-temperature rheological properties of DCRMA.

Findings

The results showed that the penetration balanced the CR degradation and the virgin asphalt aging well and thus could be used as a main parameters control indicator. The CR solubility, FM and FTIR tests proved that the CR has been fully devulcanized and pyrolytic via the preparation process. The DCRMA exhibited better low-temperature and fatigue performance and lower rutting performance than the conventional crumb rubber modified asphalt (CRMA) with the same CR content. Finally, the time–temperature superposition principle could be employed for all binders in this study.

Originality/value

A new preparation process for DCRMA was developed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 May 2022

Nivin M. Ahmed, Mostafa G. Mohamed and Walaa M. Abd El-Gawad

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite…

Abstract

Purpose

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite materials that refer to multilayered structures with a core totally surrounded by shell(s) (onion-like structure). These new structures can offer an advantage of applying new adjustable parameters like shape, stoichiometry and chemical ordering, in addition to the opportunity of tailoring more complexed structures for different applications. Recently it was found that these structures can be tuned and taken for more advanced path with novel structures formed of core surrounded by multishells. The purpose of this study is to study the effect of the new anticorrosive pigments with its mutual shells and how each shell affects the performance of the pigment in protecting the metal and which shell will be more relevant in its effect.

Design/methodology/approach

The prepared pigments were characterized using X-ray fluorescence, X-ray diffraction, TEM and SEM/EDX to prove their core-shell structure, and then they were integrated in coating formulations to evaluate their anticorrosive activity using immersion test and electrochemical impedance spectroscopy (EIS).

Findings

The results showed that the prepared core-shell pigments possess a lot of unique characteristics and can offer improved anticorrosive performance in the generated coatings.

Originality/value

Core-mutual shells structured pigments were prepared for improving the corrosion resistivity of the organic coatings as a new trend in anticorrosive pigments.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 November 2023

Lochan Singh and Vijay Singh Sharanagat

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up…

148

Abstract

Purpose

Nature and occurrence of food-borne pathogens in raw and processed food products evolved greatly in the past few years due to new modes of transmission and resistance build-up against sundry micro-/macro-environmental conditions. Assurance of food health and safety thus gained immense importance, for which bio-sensing technology proved very promising in the detection and quantification of food-borne pathogens. Considering the importance, different studies have been performed, and different biosensors have been developed. This study aims to summarize the different biosensors used for the deduction of food-borne pathogens.

Design/methodology/approach

The present review highlights different biosensors developed apropos to food matrices, factors governing their selection, their potential and applicability. The paper discusses some related key challenges and constraints and also focuses on the needs and future research prospects in this field.

Findings

The shift in consumers’ and industries’ perceptions directed the further approach to achieve portable, user and environmental friendly biosensing techniques. Despite of these developments, it was still observed that the comparison among the different biosensors and their categories proved tedious on a single platform; since the food matrices tested, pathogen detected or diagnosed, time of detection, etc., varied greatly and very few products have been commercially launched. Conclusively, a challenge lies in front of food scientists and researchers to maintain pace and develop techniques for efficiently catering to the needs of the food industry.

Research limitations/implications

Biosensors deduction limit varied with the food matrix, type of organism, material of biosensors’ surface, etc. The food matrix itself consists of complex substances, and various types of food are available in nature. Considering the diversity of food there is a need to develop a universal biosensor that can be used for all the food matrices for a pathogen. Further research is needed to develop a pathogen-specific biosensor that can be used for all the food products that may have accuracy to eliminate the traditional method of deduction.

Originality/value

The present paper summarized and categorized the different types of biosensors developed for food-borne pathogens.

Graphical abstract

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 24 June 2022

Lan Chu, Chao Guo, Qing Zhang, Qing Wang, Yiwen Ge, Mingyang Hao and Jungang Lv

This study aims to using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscope/energy dispersive Xray spectrometer to identify…

Abstract

Purpose

This study aims to using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscope/energy dispersive Xray spectrometer to identify different automotive coatings for forensic purpose.

Design/methodology/approach

Two four-layered samples in a hit-and-run case were compared layer by layer with three different methods. FTIR spectroscopy was used to primarily identify the organic and inorganic compositions. Raman spectrum and scanning electron microscope/energy dispersive Xray spectrometer (SEM-EDS) were further used to complement the FTIR results.

Findings

Two weak and tiny peaks in one layer found between two samples by FTIR, Raman microscope and SEM-EDS verified the result of differences. The study used the three instruments in combination and found it’s effective in sensing coatings, especially in the inorganic additives.

Research limitations/implications

Using these three instruments in combination is more accurate than individually in multilayered coating analysis for forensic purpose.

Practical implications

The three different instruments all present unique information on the composition, and provided similar and mutually verifiable results on the two samples.

Originality/value

With this method, scientists could identify and discriminate important coating evidences with tiny but characteristic differences.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 August 2023

Shakiba Narjabadi Fam and Ramona Massoud

Food safety is among the most important topics in the world. According to WHO guidelines, aflatoxins are one of the most hazardous food toxins. Therefore, their detection in food…

Abstract

Purpose

Food safety is among the most important topics in the world. According to WHO guidelines, aflatoxins are one of the most hazardous food toxins. Therefore, their detection in food products seems crucial due to health problems. The purpose of this paper is to discuss the different types of biosensors in aflatoxin determination.

Design/methodology/approach

Traditional detection methods are time consuming and expensive. As fast and accurate detection is important in monitoring food contaminants, alternative analytical methods would be essential. Biosensors are the intelligent design of sensitive sensors for precise detection of toxins in a short time. Various biosensors are being applied for aflatoxins detection in food products with many advantages over the traditional methods.

Findings

Biosensors are cost-effective, stable and have possessed high selectivity, specificity and accuracy in aflatoxins detection. Applying biosensors has been increased recently, so biosensing methods (optical, electrochemical, piezoelectrical, immunosensors, surface plasmon resonance and calorimetric) are discussed along with their advantages in this article.

Research limitations/implications

More efforts should be occurred to detect and decrease the aflatoxins by biosensors, and some traits like accuracy and selectivity would be the purpose of future projects. The combination of various techniques would also help in toxin detection issue in food products, so high efforts in this regard are also required for the upcoming years.

Originality/value

This article also reviews different types of biosensors simultaneously and explains their specificity for aflatoxin determination in different food products and also the future trends and requirements.

Details

Nutrition & Food Science , vol. 53 no. 8
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 10 of 27