Search results

1 – 10 of over 24000
Article
Publication date: 10 May 2023

Rensheng Wang, Cong Sun, Shichao Xiu, Qi Wang, Xiaohua Zhang and Qi Zhao

This paper aims to study the influence of the different parameters of magnetorheological polishing fluids (MRP fluids) on the surface roughness and material removal rate (MRR) of…

Abstract

Purpose

This paper aims to study the influence of the different parameters of magnetorheological polishing fluids (MRP fluids) on the surface roughness and material removal rate (MRR) of the workpiece surface in the reciprocating magnetorheological polishing (RMRP) process.

Design/methodology/approach

A series of single-factor experiments are performed to evaluate the influence of the concentration of magnetic particles, concentration of abrasive particles and size of abrasive particles on surface processing effects by using the RMRP method. Moreover, the yield stress and viscosity of MRP fluids are studied based on the Bingham plastic model by varying the MRP fluids parameters.

Findings

A reasonable parameter of MRP fluids is crucial to the surface roughness and MRR of the workpiece surface, and the optimized parameters are obtained by the single-factor experiments of RMRP. The results are when the concentration of carbonyl iron particles is 40 Vol.%, the concentration of CeO2 is 5 Vol.% and the size of CeO2 is 2.5 µm in the MRP fluids, the surface roughness of the workpiece remarkably decreases to 28 nm from the initial 332 nm and the MRR of the workpiece increases to 0.118 mg/min.

Originality/value

In this study, the single-factor experiments for the different parameters of MRP fluids are studied to polish K9 glass by using the RMRP device, and the yield stress and viscosity of MRP fluids are investigated by rheological experiments, which provides reference for a reasonable selection of the MRP fluids parameter in RMRP process.

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 September 2006

O.C. Mendes, R.F. Ávila, A.M. Abrão, Pedro Reis and J. Paulo Davim

The knowledge over the performance of cutting fluids when applied under different machining conditions (such as distinct work material and cutting parameters) is critical in order…

1148

Abstract

Purpose

The knowledge over the performance of cutting fluids when applied under different machining conditions (such as distinct work material and cutting parameters) is critical in order to improve the efficiency of most machining operations. This paper is concerned with the performance of cutting fluids employed under two distinct machining operations involving aluminium alloys: drilling of AA 1050‐O aluminium applying cutting fluid as a mist and turning of AA 6262‐T6 aluminium alloy using cutting fluids (as a flood) with distinct extreme pressure additives (chlorine, sulphur and phosphor).

Design/methodology/approach

This work reports on a experimental study of the performance of cutting fluids when machining aluminium alloys.

Findings

The results indicated an increase in the flow rate of the mist led to lower feed forces but higher torque, power consumption and specific cutting pressure in the drilling operation (AA 1050‐O aluminium). The surface finish was not drastically affected by the cutting fluid flow rate. When turning AA 6162‐T6 aluminium alloy, in general, best results were observed using 10 per cent fluid concentration applied at the tool‐workpiece interface. The cutting fluid containing chlorine as extreme pressure additive produced lower cutting forces and better surface finish at high cutting speed and low feed rate and depth of cut.

Originality/value

The novel element of this paper is the use of minimal lubrication (drilling) and cutting fluids with distinct extreme pressure (turning).

Details

Industrial Lubrication and Tribology, vol. 58 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 September 2017

Lijesh K.P., Deepak Kumar and Harish Hirani

The purpose of this paper is to report on the development of magnetorheological (MR) fluids, having high on-state shear stress/viscosity, low off-state shear stress/viscosity…

Abstract

Purpose

The purpose of this paper is to report on the development of magnetorheological (MR) fluids, having high on-state shear stress/viscosity, low off-state shear stress/viscosity, good redispersibility and stable suspension of carbonyl iron particles, using tetramethyl ammonium hydroxide (TAH) and oleic acid.

Design/methodology/approach

MR fluids for use in brakes are synthesized using different weight percentages of silicone oil, TAH, oleic acid and iron particles. The effects of TAH and oleic acid are studied. Shear stress is measured as a function of magnetic field on a magneto-rheometer. The images of MR particles settling with time are presented. The test set-up used to evaluate the performance of the MR fluids synthesized for brake application is detailed. Finally, a significant improvement in the MR performance of brakes is reported.

Findings

The MR fluid having 0.25 Wt.% oleic acid showed low off-state viscosity/shear stress and high on-state viscosity/shear stress. A higher weight percentage of TAH in the MR fluid further reduced the low off-shear stress and increased the high on-state shear stress with better stability.

Originality/value

Improvement of MR brake performance by adding surfactants like TAH and oleic acid has been the subject matter of several studies in the past, but these studies used a fixed percentage of surfactants in MR fluids. In the present work, the optimum percentage of TAH and oleic acid for an improved braking performance is determined by varying their content in the MR fluid, which has not been reported in any other work thus far.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2005

Wlodzimierz Ochonski

To present some new designs of magnetic fluid exclusion seals for rolling bearings and possibility to use them in modern industrial sealing applications.

1671

Abstract

Purpose

To present some new designs of magnetic fluid exclusion seals for rolling bearings and possibility to use them in modern industrial sealing applications.

Design/methodology/approach

In the paper is given principle of magnetic fluid sealing technology and are presented new designs of magnetic fluid exclusion seals for rolling bearings, such as compact magnetic fluid seals, two‐stages seals being combination of magnetic fluid seal and labyrinth seal or radial lip seal, magnetic fluid seals with “floating” magnetic system. This paper also shows examples of their application in various rotating process equipment.

Findings

Provides information about new designs of bearing seals and gives the main advantages of these seals over other types, such as total tightness, low viscous drag, maintenance‐free service and high reliability.

Originality/value

This paper offers some new designs of high‐performance magnetic fluid exclusion seals for rolling bearings and points their practical applications.

Details

Industrial Lubrication and Tribology, vol. 57 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 May 2008

M.A. Nazarboland, X. Chen, J.W.S. Hearle, R. Lydon and M. Moss

This paper aims to discuss the development of a software tool UniverFilter™ which is capable of geometrical modelling of 3D woven fabrics, interfacing with computational fluid…

Abstract

Purpose

This paper aims to discuss the development of a software tool UniverFilter™ which is capable of geometrical modelling of 3D woven fabrics, interfacing with computational fluid dynamics tools to numerically determine the fluid (and more specifically liquid) flow path and simulating the filtration process by introducing particles of various shapes and sizes.

Design/methodology/approach

The method employed in creating the software tool is based on geometrical modelling of the single‐layer woven fabric with monofilament yarns, numerical analysis of the fluid‐flow problem, and mathematical modelling of the forces exerted on particles to accurately predict the settlement of such particles on the fabric. In the case of particle motion, a Lagrangian approach is used.

Findings

Creation of a software tool capable of simulation and modelling the filtration process through woven fabrics is the primary achievement. The effect of geometrical parameters of the woven fabric on fluid flow utilizing the results from fluid pressure and fluid velocity on the fabric show that the fluid flow is significantly influenced in the interstices and chamber downstream by the fabric. Fluid‐flow resistance and pressure loss are obtained from the results of fluid velocity and pressure. The results from the fluid pressure on the fabric could also be employed to more accurately predict how pore shapes and sizes are transformed.

Originality/value

Creation of a modelling tool for filtration through woven fabric media. This software is the foundation of establishing a standalone tool with the capability to design, test and improve fabric filter design for more efficient filtration properties.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 April 1985

Lorraine G. Olson and Klaus‐Jürgen Bathe

An infinite element based on the doubly asymptotic approximation (DAA) for use in finite element analysis of fluid—structure interactions is presented. Fluid finite elements model…

Abstract

An infinite element based on the doubly asymptotic approximation (DAA) for use in finite element analysis of fluid—structure interactions is presented. Fluid finite elements model the region near the solid. Infinite elements account for the effects of the outer fluid on the inner region. The DAA‐based infinite elements involve an approximate calculation of the added mass using static mapped infinite elements, plus a consistent damping term. Simple test analyses for a range of fluid properties demonstrate the performance of the solution technique. The analyses of a Helmholtz resonator (open pipe) and a circular plate in water indicate the practical use of the solution approach.

Details

Engineering Computations, vol. 2 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 16 January 2007

M.A. Mehrabian and M. Khoramabadi

The purpose of this paper is to investigate numerically the influence of variable fluid viscosity on thermal characteristics of plate heat exchangers for counter‐flow and…

1351

Abstract

Purpose

The purpose of this paper is to investigate numerically the influence of variable fluid viscosity on thermal characteristics of plate heat exchangers for counter‐flow and steady‐state conditions.

Design/methodology/approach

The approach to fulfill the purpose of the paper is to derive the one‐dimensional energy balance equations for the cold and hot streams in the adjacent channels of a plate heat exchange composed of four corrugated plates. A finite difference method has been used to calculate the temperature distribution and thermal performance of the exchanger. Water is used as the hot liquid being cooled in the side channels, while a number of working fluids whose viscosity variation versus temperature is more severe were used as the cold fluid being heated in the central channel.

Findings

The program is run for a combination of working fluids such as water‐water, water‐isooctane, water‐benzene, water‐glycerin and water‐gasoline. The temperature distributions of both streams have been plotted along the flow channel for all the above combination of working fluids. The overall heat transfer coefficients have also been plotted against both cold and hot fluid temperatures. It is found that the overall heat transfer coefficient varies linearly with respect to either cold or hot fluid temperature within the temperature ranges applied in the paper. The exchanger effectiveness is not significantly affected when either the temperature dependent viscosity is applied or the nature of cold liquid is changed.

Originality/value

This paper contains a new method of numerical solution of energy balance equations for the thermal control volumes bounded by two plates. A comparison of the calculated results with documented experimental results validates the numerical method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 March 2014

Boualem Chetti

The performance of finite circular journal bearing lubricated with micropolar fluids taking into account the elastic deformation of the bearing liner is presented. The paper aims…

Abstract

Purpose

The performance of finite circular journal bearing lubricated with micropolar fluids taking into account the elastic deformation of the bearing liner is presented. The paper aims to discuss these issues.

Design/methodology/approach

The modified Reynolds equation is obtained using the micropolar lubrication theory. The solution of the modified Reynolds equation is determined using finite difference technique. The static characteristics in terms of load-carrying capacity, attitude angle, side leakage and friction coefficient for micropolar and Newtonian fluids are determined for various values of eccentricity ratio and different values of elastic coefficient.

Findings

Compared with Newtonian fluids, the micropolar fluids produce an increase in the load-carrying capacity and a reduction in the attitude angle, the friction factor and side leakage for both the rigid and deformable bearings.

Originality/value

It is concluded that the influence of elastic deformation on the bearing characteristics lubricated with micropolar fluids is significantly apparent compared with bearing lubricated with Newtonian fluids.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2024

Atifa Kanwal, Ambreen A. Khan, Sadiq M. Sait and R. Ellahi

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid…

Abstract

Purpose

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid. This study aims to highlight the effects of varying density of particles in a fluid. The fluid flows through a wavy curved passage under an applied magnetic field. Heat transfer is discussed with variable thermal conductivity.

Design/methodology/approach

The mathematical model of the problem consists of coupled differential equations, simplified using stream functions. The results of the time flow rate for fluid and solid granules have been derived numerically.

Findings

The fluid and dust particle velocity profiles are being presented graphically to analyze the effects of density of solid particles, magnetohydrodynamics, curvature and slip parameters. Heat transfer analysis is also performed for magnetic parameter, density of dust particles, variable thermal conductivity, slip parameter and curvature. As the number of particles in the fluid increases, heat conduction becomes slow through the fluid. Increase in temperature distribution is noticed as variable thermal conductivity parameter grows. The discussion of variable thermal conductivity is of great concern as many biological treatments and optimization of thermal energy storage system’s performance require precise measurement of a heat transfer fluid’s thermal conductivity.

Originality/value

This study of heat transfer with inhomogeneous distribution of the particles in a fluid has not yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 October 2018

Dariusz Ozimina, Monika Madej, Joanna Kowalczyk, Ewa Ozimina and Stanislaw Plaza

This study aims to determine the properties of a new non-toxic cutting fluid and compared with cutting fluid based on mineral oil.

Abstract

Purpose

This study aims to determine the properties of a new non-toxic cutting fluid and compared with cutting fluid based on mineral oil.

Design/methodology/approach

The tool wear was measured under dry and wet cutting conditions. The non-toxic cutting fluid was compared with cutting fluid based on mineral oil. The experiments were carried out using CTX 310 ECO numerical control lathe. The wear of the cutting tools was measured by means of stereo zoom microscopy (SX80), while the elements were identified through scanning electron microscopy (JSM 7100F). The workpiece surface texture was studied using a Talysurf CCI Lite non-contact 3D profiler. The contact wetting angle was established with a KSV CAM 100 tester.

Findings

The non-toxic cutting fluid has reached comparable coefficient of friction with a coolant containing mineral oil. The use of the non-toxic cutting fluid with low foaming tendency resulted in lower wear.

Practical implications

Machining processes require that cutting fluids be applied to reduce the tool wear and improve the quality of the workpiece surface. Cutting fluids serve numerous purposes such as they act as coolants and lubricants, remove chips and temporarily prevent corrosion of the product.

Originality/value

The investigations discussed in this paper have contributed to the development of non-toxic and environmentally friendly manufacturing because of the use of cutting fluid containing zinc aspartate and its comparison with commonly used cutting fluid.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 24000