Search results

1 – 8 of 8
Article
Publication date: 22 March 2024

Muhammed Turan Aslan, Bahattin Kanber, Hasan Demirtas and Bilal Sungur

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Abstract

Purpose

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Design/methodology/approach

An experimental setup was designed, experiments were conducted and the obtained results were compared with the finite element results. The deformations were measured according to various flow rates of electrolyte. In finite element calculations, the pressure distribution created by the electrolyte on the blade surface was obtained in the ANSYS® (A finite element analysis software) Fluent software and transferred to the static structural where the deformation analysis was carried out. Three different parameters were examined, namely blade thickness, blade material and electrolyte pressure on blade disk caused by mass flow rate. The deformation results were compared with the gap distances between cathode and anode.

Findings

Large deformations were obtained at the free end of the blade and the most curved part of it. The appropriate pressure values for the electrolyte to be used in the production of blisk blades were proposed numerically. It has been determined that high pressure applications are not suitable for gap distance lower than 0.5 mm.

Originality/value

When the literature is examined, it is required that the high speed flow of the electrolyte is desired in order to remove the parts that are separated from the anode from the machining area during electrochemical machining. However, the electrolyte flowing at high speeds causes high pressure in the blisk blades, excessive deformation and vibration of the machined part, and as a result, contact of the anode with the cathode. This study provides important findings for smooth electro chemical machining at high electrolyte flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 January 2023

Sudev Dutta and Payal Bansal

The purpose of this review paper is to outline the parachute materials and its behavior. To enhance parachute life, it is highly desirable to consider the commercial angle for any…

Abstract

Purpose

The purpose of this review paper is to outline the parachute materials and its behavior. To enhance parachute life, it is highly desirable to consider the commercial angle for any parachute manufacturing industry and its components under varying operational conditions. Hence, the knowledge of various textile materials and operational conditions which contributes the parachute strength and durability will be helpful for industries/researchers.

Design/methodology/approach

This section is not applicable for a review paper.

Findings

Parachute is a material used in numerous real-time applications such as man-drop, cargo delivery, aircraft recovery and aircraft decelerator which drastically reduces human efforts and time. However, each application requires a unique design and fabric selection to achieve the area of drag needed and the terminal velocity of the parachute material while in flight. For designing a man-drop parachute, the most critical parameters are weight and strength which must be considered during manufacturing. The army person uses the man-drop parachute, which must be as light as possible.

Originality/value

This paper is an original review work and will be helpful for parachute manufacturers/researchers to enhance the life of parachutes with improved functionality.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 25 January 2024

Mauro Minervino and Renato Tognaccini

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb…

Abstract

Purpose

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb vector-based far-field methods are used at the scope, and the paper starts with extending recent steady compressible formulas to the unsteady regime.

Design/methodology/approach

Exact vortical force formulas are derived considering inertial or non-inertial frames, viscous or inviscid flows, fixed or moving bodies. Numerical applications to a NACA0012 airfoil oscillating in pure plunging motion are illustrated, considering subsonic and transonic flow regimes. The total force accuracy and sensitivity to the control volume size is first analysed, then the axial force is decomposed and results are compared to the inviscid force (thrust) and to the steady force (drag).

Findings

Two total axial force decompositions in thrust and drag contributions are proposed, providing satisfactory results. An additional force decomposition is also formulated, which is independent of the arbitrary pole appearing in vortical formulas. Numerical inaccuracies encountered in inertial reference frames are eliminated, and the extended formulation also allows obtaining an accurate force prediction in presence of shock waves.

Originality/value

No thrust/drag bookkeeping methodology was actually available for oscillating airfoils in viscous and compressible flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 April 2024

Cheng Xiong, Bo Xu and Zhenqian Chen

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Abstract

Purpose

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Design/methodology/approach

In this study, a model of gas lubrication thrust bearing was established by modifying the wall roughness and considering rarefaction effect. The flow and lubrication characteristics of gas film were discussed based on the equivalent sand roughness model and rarefaction effect.

Findings

The boundary slip and the surface roughness effect lead to a decrease in gas film pressure and temperature, with a maximum decrease of 39.2% and 8.4%, respectively. The vortex effect present in the gas film is closely linked to the gas film’s pressure. Slip flow decreases the vortex effect, and an increase in roughness results in the development of slip flow. The increase of roughness leads to a decrease for the static and thermal characteristics.

Originality/value

This work uses the rarefaction effect and the equivalent sand roughness model to investigate the lubrication characteristics of gas thrust bearing. The results help to guide the selection of the surface roughness of rotor and bearing, so as to fully control the rarefaction effect and make use of it.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 March 2024

Hakan F. Oztop, Burak Kiyak and Ishak Gökhan Aksoy

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store…

Abstract

Purpose

This study aims to focus on understanding how different jet angles and Reynolds numbers influence the phase change materials’ (PCMs) melting process and their capacity to store energy. This approach is intended to offer novel insights into enhancing thermal energy storage systems, particularly for applications where heat transfer efficiency and energy storage are critical.

Design/methodology/approach

The research involved an experimental and numerical analysis of PCM with a melting temperature range of 22 °C–26°C under various conditions. Three different jet angles (45°, 90° and 135°) and two container angles (45° and 90°) were tested. Additionally, two different Reynolds numbers (2,235 and 4,470) were used to explore the effects of jet outlet velocities on PCM melting behaviour. The study used a circular container and analysed the melting process using the hot air inclined jet impingement (HAIJI) method.

Findings

The obtained results showed that the average temperature for the last time step at Ф = 90° and Re = 4,470 is 6.26% higher for Ф = 135° and 14.23% higher for Ф = 90° compared with the 45° jet angle. It is also observed that the jet angle, especially for Ф = 90°, is a much more important factor in energy storage than the Reynolds number. In other words, the jet angle can be used as a passive control parameter for energy storage.

Originality/value

This study offers a novel perspective on the effective storage of waste heat transferred with air, such as exhaust gases. It provides valuable insights into the role of jet inclination angles and Reynolds numbers in optimizing the melting and energy storage performance of PCMs, which can be crucial for enhancing the efficiency of thermal energy storage systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 April 2024

Maria Kontesa, Rayenda Khresna Brahmana and Hui Wei You

The research objective starts from the argument that small-scale multinational corporations’ (SMNCs’) managerial behavior toward auditing decisions is influenced by their personal…

Abstract

Purpose

The research objective starts from the argument that small-scale multinational corporations’ (SMNCs’) managerial behavior toward auditing decisions is influenced by their personal value, especially when the auditing process is not mandatory. This study aims to examine how national culture-religiosity affects that decision. The authors further examine how foreign-owned MNCs might behave differently from local MNCs, although the host country’s cultural-religiosity value might influence that decision.

Design/methodology/approach

This study obtains the data from three sources: Hofstede Framework, Pew Research Center and World Bank Enterprise Survey in cross-sectional mode. The final sample consists of 8,590 SMNCs from 45 countries as the observations. This study uses robust regression analysis to test the effects of culture, religiosity and controlling shareholders on the audited financial statements decision.

Findings

The regression results support the hypothesis, whereas cultural-religiosity values are associated with the audited financial report. The findings confirm stakeholder theory and institutional theory.

Originality/value

This study fills a gap in the literature by providing empirical evidence on the cultural and religiosity effects on the accounting decision of SMNCs. The results can be used as the foundation for future research related to MNCs’ managerial behavior toward accounting policies, especially with the psychosocial factors.

Details

Pacific Accounting Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0114-0582

Keywords

Article
Publication date: 11 December 2023

Jianbin Luo, Mingsen Li, Ke Mi, Zhida Liang, Xiaofeng Chen, Lei Ye, Yuanhao Tie, Song Xu, Haiguo Zhang, Guiguang Chen and Chunmei Jiang

The purpose of this paper is to study the aerodynamic characteristics of Ahmed body in longitudinal and lateral platoons under crosswind by computational fluid dynamics…

Abstract

Purpose

The purpose of this paper is to study the aerodynamic characteristics of Ahmed body in longitudinal and lateral platoons under crosswind by computational fluid dynamics simulation. It helps to improve the aerodynamic characteristics of vehicles by providing theoretical basis and engineering direction for the development and progress of intelligent transportation.

Design/methodology/approach

A two-car platoon model is used to compare with the experiment to prove the accuracy of the simulation method. The simplified Ahmed body model and the Reynolds Averaged N-S equation method are used to study the aerodynamic characteristics of vehicles at different distances under cross-winds.

Findings

When the longitudinal distance x/L = 0.25, the drag coefficients of the middle and trailing cars at β = 30° are improved by about 272% and 160% compared with β = 10°. The side force coefficients of the middle and trailing cars are increased by 50% and 62%. When the lateral distance y/W = 0.25, the side force coefficients of left and middle cars at β = 30° are reduced by 38% and 37.5% compared with β = 10°. However, the side force coefficient of the right car are increased by about 84.3%.

Originality/value

Most of the researches focus on the overtaking process, and there are few researches on the neat lateral platoon. The innovation of this paper is that in addition to studying the aerodynamic characteristics of longitudinal driving, the aerodynamic characteristics of neat lateral driving are also studied, and crosswind conditions are added. The authors hope to contribute to the development of intelligent transportation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 8 of 8