Search results

1 – 10 of 591
Article
Publication date: 3 April 2023

Hongqiang Ma, Yue Xie, Xingpeng Song, Yu Liu, Xinmei Luo and Shengxun Wang

The purpose of this paper is to recover the waste heat of flue gas heat exchanger (FGHE) as efficiently as possible and avoid the acid dew corrosion of that.

Abstract

Purpose

The purpose of this paper is to recover the waste heat of flue gas heat exchanger (FGHE) as efficiently as possible and avoid the acid dew corrosion of that.

Design/methodology/approach

A novel flue gas waste heat recovery system was proposed in the paper. The dynamic mathematical models of key equipment in that were established based on theory and experiment method. The proportion integration differentiation-differentiation (PID-P) cascade control method based on particle swarm optimization algorithm was used to control the outlet temperature of FGHE. The dynamic characteristics of the flue gas heat exchange system were simulated by the particle swarm optimization algorithm with different fitness functions.

Findings

The PID-P temperature controller parameters can be quickly and effectively obtained by the particle swarm optimization algorithm based on the fitness function of integral time absolute error (ITAE). The overshoot, rise time and adjusting time of the novel system are 2, 83 and 105s, respectively. Compared with the traditional two-step tuning (T-ST) method, the novel system is better in dynamic and steady-state performance. The overshoot and the adjustment time of the system are reduced by 44% and 328s, respectively. ITAE is a performance evaluation index for control system with good engineering practicability and selectivity.

Originality/value

The dynamic mathematical model of key equipment in the new flue gas waste heat recovery system is established and the system's control strategies and methods are explored.

Details

Engineering Computations, vol. 40 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 April 2014

Jacek Smolka, Adam Fic, Andrzej J. Nowak and Ludwik Kosyrczyk

The purpose of this paper is to develop a 3-D fully transient numerical model of the heat and fluid flow associated with the chemical reactions that occur in the heating system of…

Abstract

Purpose

The purpose of this paper is to develop a 3-D fully transient numerical model of the heat and fluid flow associated with the chemical reactions that occur in the heating system of the coke oven battery. As a result, the model can be used to provide data for the control system of the battery to reduce energy consumption and emissions and to obtain a product of the desired quality.

Design/methodology/approach

In the proposed model, an accurate representation of the heating flue geometry, the volumetric heat sources as a result of the coke oven gas combustion, the temperature- and mole fraction-dependent properties of the gases were taken into account. The most important part of the model was the unsteady boundary condition definition that allowed the modeling of the periodic heat delivery to the two oven heating walls, both in the coking and the reversion cycles.

Findings

The temperatures obtained using the computational fluid dynamics (CFD) model showed the same pattern of temperature variations as that observed in the experiments. It was also found that the quality of the temperature variation predictions was highly dependent on the radiation model settings.

Originality\value

The CFD models available in the literature describe the steady or pseudo-steady state operation of the heating system of the coke oven battery. The model developed in this work fully reflects the unsteady character of this heating system. Moreover, the proposed model is prepared for coupling with a model of the coking process that occurs in the two neighboring coke oven chambers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 July 2019

Na Li, Han Wang, Hui Xu and Mingfeng Miao

Ammonia injection grid (AIG) is used as an input device for ammonia which reacts with NOx in the selective catalytic reduction (SCR) reactor. However, non-uniform concentration…

Abstract

Purpose

Ammonia injection grid (AIG) is used as an input device for ammonia which reacts with NOx in the selective catalytic reduction (SCR) reactor. However, non-uniform concentration distribution of ammonia could produce partially poisoning or deposits of the catalyst. In this work, for making ammonia widely distributed throughout the flue gas and fully mixed, an optimization method of AIG is proposed.

Design/methodology/approach

Depending on the complexity of fluid flow, the relation between the concentration distributions of ammonia and the geometric parameters of AIG is nonlinear. Based on a certain amount of AIG samples, the computational fluid dynamics (CFD) simulations are applied to propose the agent model which describes the functional relation of the deviation of ammonia concentration and the geometric parameters of AIG. The optimization model of AIG based on the agent model is established. The optimized AIG based on the agent model can be used to produce uniform concentration distributions of ammonia, especially in the case that velocity distribution of flue gas is non-uniform.

Findings

For qualitatively confirming this optimization method, the three-dimensional CFD simulation of the optimized AIG is carried out. The results reveal that the diffusion process of ammonia gas is consistent with the development of the local vortices, which have a certain relation with the velocity distribution of the flue gas. The unequal ammonia injection designed by the optimization based on the agent model promotes a better mixing of ammonia and flue gas.

Originality/value

In this work, first, the method for optimizing AIG based on the agent model is proposed. Second, the three-dimensional CFD modeling and simulation of the optimized AIG is carried out, and the mixing effects of ammonia and flue gas are presented.

Details

Engineering Computations, vol. 36 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 1998

J. Bordzilowski and K. Darowicki

Industrial chimneys are a great part of environmental protection in industrial countries. In recent years many of them have been used to carrying away very aggressive gases from…

1892

Abstract

Industrial chimneys are a great part of environmental protection in industrial countries. In recent years many of them have been used to carrying away very aggressive gases from boilers and flue gas desulphurisation (FGD) units below acid dew‐point temperature. It is opf very important to modernize the old stacks and protect them against corrosion. The proper anti‐corrosion protection of modern high stacks is also an important technical and economical problem. In this paper the mechanism of acid dew‐point corrosion, as well as construction of industrial chimneys, methods of their anti‐corrosion protection and modernisation are described.

Details

Anti-Corrosion Methods and Materials, vol. 45 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 1975

R.A. Umpleby

The unique chimney design for Drax power station resulted in problems with conventional linings. Low exit flue gas temperatures made it necessary for the chimney flues to be…

Abstract

The unique chimney design for Drax power station resulted in problems with conventional linings. Low exit flue gas temperatures made it necessary for the chimney flues to be protected from deposited acid attack. A cheap plastic material was initially used to protect the flues, but it failed during precommissioning tests. An alternative protection had to be found in the short period before the chimney became operational. N.E. Region Scientific Services Department together with a manufacturer have developed a new fluoroelastomer plastic lining. The new lining has been installed in two of the flues in the Drax chimney and its performance is being monitored. Life expectancy predictions have been made, based on theoretical treatments of experimental data.

Details

Anti-Corrosion Methods and Materials, vol. 22 no. 8
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 June 1954

G. Whittingham

In the first part of the paper, which outlines the laboratory and field investigations on corrosion by flue gases from solid fuel combustion carried out by the British Coal…

Abstract

In the first part of the paper, which outlines the laboratory and field investigations on corrosion by flue gases from solid fuel combustion carried out by the British Coal Utilisation Research Association, the effects of different flue gas constituents on corrosion phenomena are discussed. Laboratory studies of the effects of fuel type and method of combustion on the sulphuric acid content of combustion gases are described. The second part presents the results of measurements of the condensation characteristics of flue gases from water‐tube boilers in power stations and from various industrial boilers and furnaces; investigations into the use of additives are described briefly. The final section is concerned with some theoretical considerations of effects of fuel type, burning rate, etc., on the amounts of sulphuric acid likely to be present in the combustion products from domestic appliances.

Details

Anti-Corrosion Methods and Materials, vol. 1 no. 6
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 October 2003

Ton de Weijer and Wally Huijbregts

In a new build waste incinerator, the waste (refuse derived fuel) was burned on a discontinuous moving grate. Frequent furnace overpressure peaks occurred because of this firing…

Abstract

In a new build waste incinerator, the waste (refuse derived fuel) was burned on a discontinuous moving grate. Frequent furnace overpressure peaks occurred because of this firing method and as a result, flue gas and fly‐ash were pushed out of the boiler and into the building. During the plant start up period, a seal in a water‐feed pipeline broke, and a large amount of condensed steam was discharged into the boiler house. Shortly thereafter, very severe corrosion was noticed on the galvanised gangways, steel building components, the boiler aluminium sheeting and on processing lines. A theoretical study of the condensation of the flue gas indicated that sulphuric acid would condense before it reached the external aluminium sheeting and that under normal conditions, dry hydrochloric acid fumes would be removed by the boiler house ventilators. However, the steam leakage had caused the hydrochloric acid to be dissolved in the condensed water and that had resulted in the severe corrosion damage, which had become evident subsequently.

Details

Anti-Corrosion Methods and Materials, vol. 50 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 October 2019

Soroush Sadripour, Mohammad Estajloo, Seyed Abdolmehdi Hashemi, Ali J. Chamkha and Mahmoud Abbaszadeh

The purpose of this study is to reduce energy consumption in bakeries. Due to fulfill this demand, quite a few parameters such as energy and exergy efficiency, energy waste and…

Abstract

Purpose

The purpose of this study is to reduce energy consumption in bakeries. Due to fulfill this demand, quite a few parameters such as energy and exergy efficiency, energy waste and fuel consumption by different traditional flatbreads bakeries (Sangak, Barbari, Taftun and Lavash should be monitored and their roles should not be neglected.

Design/methodology/approach

In the present study, experimental measurements and mathematical modeling are used to scrutinize and investigate the effects of the aforementioned parameters on energy consumption by bakeries.

Findings

The results show that by doing reported methods in this paper, the wasted energy of the walls can be decreased by about 65 per cent; and also, by controlling the combustion reaction to perform with 5 per cent excess air, the wasted energy of excess air declines by about 90 per cent. And finally, the energy and exergy efficiency of bakeries is increased, and as a result, the annual energy consumption of Sangak, Barbari, Taftun and Lavash bakeries diminish about 71, 59, 57 and 40 per cent, respectively.

Originality/value

As evidenced by the literature review, it can be observed that neither numerical studies nor experimental investigations have been conducted about energy and exergy analyses of Iranian machinery traditional flatbread bakeries. It is clear that due to a high preference of Iranians to use the traditional bread and also the popularity of baking this kind of bread in Iran, if it is possible to enhance the traditional oven conditions to decrease the loss of natural gas instead of industrializing the bread baking, the energy consumption in the country can be optimized.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2014

Katarzyna Stęchły, Gabriel Wecel and Derek B. Ingham

The main goal of this work was the CFD analysis of air and oxy-coal combustion, in order to develop a validated with experimental measurements model of the combustion chamber…

Abstract

Purpose

The main goal of this work was the CFD analysis of air and oxy-coal combustion, in order to develop a validated with experimental measurements model of the combustion chamber. Moreover, the purpose of this paper is to provide information about limitations of the sub-models implemented in commercial CFD code ANSYS Fluent version 13.0 for the oxy-coal combustion simulations. The influence of implementation of the weighted sum of gray gas model (WSGGM) with coefficients updated to oxy-coal combustion environment has been investigated.

Design/methodology/approach

The sub-models validated with experimental measurements model for the air combustion has been used to predict the oxy-coal combustion case and subsequently the numerical solutions have been compared with the experimental data, which enclose the surface incident radiation (SIR) and the flue gas temperature. To improve the numerical prediction of the oxy-coal combustion process the own routine for calculating properties of the oxy-combustion product has been implemented.

Findings

The results of numerical simulation of combustion in the air environment fitted within the experimental measurements accuracy. However, the air combustion sub-models implemented for the oxy-coal combustion simulations does not predict the SIR within the experimental data accuracy. The implementation of own routine, which uses the coefficients calculated for oxy-coal combustion environment shows improvement in numerical prediction of oxy-coal combustion.

Originality/value

The radiative properties of gases in the combustion chamber during oxy-coal combustion calculated using the WSGGM implemented in ANSYS Fluent 13.0 do not predict the SIR within experimental measurement accuracy, however, implementation of WSGGM with updated coefficients provide a reasonable improvement in numerical prediction of SIR in the oxy-coal combustion.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1956

R.W. Kear

In this, the concluding part of Mr. Kear's paper, methods of reducing corrosion by fluegas condensates are discussed, including fuel selection, the addition of ‘inerts,’ dusts…

Abstract

In this, the concluding part of Mr. Kear's paper, methods of reducing corrosion by fluegas condensates are discussed, including fuel selection, the addition of ‘inerts,’ dusts and smokes. But it is the removal of the root causes of low‐temperature corrosion which is the preferred method.

Details

Anti-Corrosion Methods and Materials, vol. 3 no. 4
Type: Research Article
ISSN: 0003-5599

1 – 10 of 591