Search results

21 – 30 of over 22000
Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4528

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1998

Asuquo B. Ebiana

A computational procedure based on a hybrid Lagrangian‐Eulerian discrete‐vortical element formulation and conformal transformation schemes are employed in this study to simulate…

Abstract

A computational procedure based on a hybrid Lagrangian‐Eulerian discrete‐vortical element formulation and conformal transformation schemes are employed in this study to simulate the interaction of an air jet with swirling air flow inside a two‐dimensional cylinder. Such an investigation is of importance to many flow‐related industrial and environmental problems, such as mixing, cooling, combustion and dispersion of air‐borne or water‐borne contaminants because of the role of vortices in the global transport of matter and heat. The basis for the simulation is discussed and numerical results compared with theoretical results for the velocity field and streamfunction obtained by the method of images. The swirling air motion and the features of a real jet are well simulated and numerical results are validated by predictions of theory to within 20 per cent. To illustrate the merging and interaction processes of vortices and the formation of large eddies, velocity vectors, particle trajectories and streamline contours are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 November 2009

A.E. Tekkaya and P.A.F. Martins

The purpose of this paper is to provide industrial, education and academic users of computer programs a basic overview of finite elements in metal forming that will enable them to…

1971

Abstract

Purpose

The purpose of this paper is to provide industrial, education and academic users of computer programs a basic overview of finite elements in metal forming that will enable them to recognize the pitfalls of the existing formulations, identify the possible sources of errors and understand the routes for validating their numerical results.

Design/methodology/approach

The methodology draws from the fundamentals of the finite elements, plasticity and material science to aspects of computer implementation, modelling, accuracy, reliability and validation. The approach is illustrated and enriched with selected examples obtained from research and industrial metal forming applications.

Findings

The presentation is a step towards diminishing the gap being formed between developers of the finite element computer programs and the users having the know‐how on the metal forming technology. It is shown that there are easy and efficient ways of refreshing and upgrading the knowledge and skills of the users without resorting to complicated theoretical and numerical topics that go beyond their knowledge and most often are lectured out of metal forming context.

Originality/value

The overall content of the paper is enhancement of previous work in the field of sheet and bulk metal forming, and from experience in lecturing these topics to students in graduate and post‐graduate courses and to specialists of metal forming from industry.

Details

Engineering Computations, vol. 26 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1993

EDUARDO N. DVORKIN and EVA G. PETÖCZ

In order to develop an engineering tool for modelling 2D metal forming processes we implemented in the flow formulation the pseudo‐concentrations technique and a quadrilateral…

Abstract

In order to develop an engineering tool for modelling 2D metal forming processes we implemented in the flow formulation the pseudo‐concentrations technique and a quadrilateral element based on mixed interpolation of tensorial components (QMITC). By doing this we obtained a reliable and efficient Eulerian formulation for modelling steady and transient metal forming problems. Some cases were analysed in order to test the performance of the formulation.

Details

Engineering Computations, vol. 10 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Daniel E.S. Rodrigues, Jorge Belinha and Renato Natal Jorge

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value…

Abstract

Purpose

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value industrial sectors mainly due to parts' anisotropy (related to the deposition strategy) and residual stresses (caused by successive heating cycles). Thus, this study aims to investigate the process improvement and the optimization of the printed parts.

Design/methodology/approach

In this work, a meshless technique – the Radial Point Interpolation Method (RPIM) – is used to numerically simulate the viscoplastic extrusion process – the initial phase of the FFF. Unlike the FEM, in meshless methods, there is no pre-established relationship between the nodes so the nodal mesh will not face mesh distortions and the discretization can easily be modified by adding or removing nodes from the initial nodal mesh. The accuracy of the obtained results highlights the importance of using meshless techniques in this field.

Findings

Meshless methods show particular relevance in this topic since the nodes can be distributed to match the layer-by-layer growing condition of the printing process.

Originality/value

Using the flow formulation combined with the heat transfer formulation presented here for the first time within an in-house RPIM code, an algorithm is proposed, implemented and validated for benchmark examples.

Article
Publication date: 1 May 1998

Javier Bonet

This paper describes the use of the incremental flow formulation for the numerical analysis of forming processes. This formulation is based on the approximation of the flow type…

Abstract

This paper describes the use of the incremental flow formulation for the numerical analysis of forming processes. This formulation is based on the approximation of the flow type of constitutive equations by means of an algorithmic equation based on geometry changes over a timestep. The resulting equilibrium equations are functions of nodal positions. Hence geometrical constraints such as contact and incompressibility can be enforced in an exact manner. Two types of incremental equations leading to first and second order time approximations are presented. The more accurate case is based on the incremental logarithmic stretches. Several examples will be used to demonstrate the validity of the method.

Details

Engineering Computations, vol. 15 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 31 January 2015

WY Szeto, Yi Wang and Ke Han

This chapter explores a descriptive theory of multidimensional travel behaviour, estimation of quantitative models and demonstration in an agent-based microsimulation.

Abstract

Purpose

This chapter explores a descriptive theory of multidimensional travel behaviour, estimation of quantitative models and demonstration in an agent-based microsimulation.

Theory

A descriptive theory on multidimensional travel behaviour is conceptualised. It theorizes multidimensional knowledge updating, search start/stopping criteria and search/decision heuristics. These components are formulated or empirically modelled and integrated in a unified and coherent approach.

Findings

The theory is supported by empirical observations and the derived quantitative models are tested by an agent-based simulation on a demonstration network.

Originality and value

Based on artificially intelligent agents, learning and search theory and bounded rationality, this chapter makes an effort to embed a sound theoretical foundation for the computational process approach and agent-based micro-simulations. A pertinent new theory is proposed with experimental observations and estimations to demonstrate agents with systematic deviations from the rationality paradigm. Procedural and multidimensional decision-making are modelled. The numerical experiment highlights the capabilities of the proposed theory in estimating rich behavioural dynamics.

Article
Publication date: 1 January 1992

ZHONG QIN and OLSON

A numerical method is developed for steady and unsteady turbulent flows with significant regions of separation. A finite element formulation of the Navier‐Stokes equations with a…

Abstract

A numerical method is developed for steady and unsteady turbulent flows with significant regions of separation. A finite element formulation of the Navier‐Stokes equations with a modified Baldwin‐Lomax eddy viscosity closure is used. The method of averaging is employed to obtain a periodic solution of unsteady flow. The formulation is tested on a problem of flow over a backward‐facing step and the results are compared with experimental and other numerical results. The gross features of both steady and unsteady flows are reasonably well predicted by the numerical analysis, at least for the limited range of parameters tested so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2015

Panteleimon A. Bakalis and Pavlos M. Hatzikonstantinou

The steady laminar quasi-3D fully developed magnetohydrodynamic (MHD) flow of a liquid metal in a curved annular channel is studied in order to determine the effect of the…

Abstract

Purpose

The steady laminar quasi-3D fully developed magnetohydrodynamic (MHD) flow of a liquid metal in a curved annular channel is studied in order to determine the effect of the magnetic field on the velocity distribution. The paper aims to discuss this issue.

Design/methodology/approach

Due to the fluid motion under the effect of the applied transverse external magnetic field, an additional magnetic field and an electric current density are induced. A hybrid formulation is used for the induced electric current density, implementing for its axial component the Ohm’s law and for its transverse components the Ampere’s law. The suggested formulation (denominated h-formulation) is combined with the extended Continuity Vorticity Pressure numerical variational method for MHD flows.

Findings

Results are obtained for different values of curvature ratios and Hartmann numbers. It is proved that as the strength of the magnetic field increases, two side regions of velocity jets are formulated in the right and in the left half sides of the inner cylinder in a direction parallel to the external magnetic field. The magnitude of the axial velocity at each region is determined by the balance of the centrifugal and the electromagnetic forces. The results help to better understand the MHD flow in toroidal ducts.

Originality/value

The results aim to help to a better understanding of the MHD flow in curved ducts.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

21 – 30 of over 22000