Search results

1 – 10 of 820
Open Access
Article
Publication date: 15 February 2021

Qi Sun, Fang Sun, Cai Liang, Chao Yu and Yamin Zhang

Beijing rail transit can actively control the density of rail transit passenger flow, ensure travel facilities and provide a safe and comfortable riding atmosphere for rail…

Abstract

Purpose

Beijing rail transit can actively control the density of rail transit passenger flow, ensure travel facilities and provide a safe and comfortable riding atmosphere for rail transit passengers during the epidemic. The purpose of this paper is to efficiently monitor the flow of rail passengers, the first method is to regulate the flow of passengers by means of a coordinated connection between the stations of the railway line; the second method is to objectively distribute the inbound traffic quotas between stations to achieve the aim of accurate and reasonable control according to the actual number of people entering the station.

Design/methodology/approach

This paper analyzes the rules of rail transit passenger flow and updates the passenger flow prediction model in time according to the characteristics of passenger flow during the epidemic to solve the above-mentioned problems. Big data system analysis restores and refines the time and space distribution of the finely expected passenger flow and the train service plan of each route. Get information on the passenger travel chain from arriving, boarding, transferring, getting off and leaving, as well as the full load rate of each train.

Findings

A series of digital flow control models, based on the time and space composition of passengers on trains with congested sections, has been designed and developed to scientifically calculate the number of passengers entering the station and provide an operational basis for operating companies to accurately control flow.

Originality/value

This study can analyze the section where the highest full load occurs, the composition of passengers in this section and when and where passengers board the train, based on the measured train full load rate data. Then, this paper combines the full load rate control index to perform reverse deduction to calculate the inbound volume time-sharing indicators of each station and redistribute the time-sharing indicators for each station according to the actual situation of the inbound volume of each line during the epidemic. Finally, form the specified full load rate index digital time-sharing passenger flow control scheme.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 2 August 2019

Mair Khan, T. Salahuddin, Muhammad Malik Yousaf, Farzana Khan and Arif Hussain

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of…

1425

Abstract

Purpose

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of Joule heating, nonlinear thermal radiation, variable thermal coefficient and activation energy past a rotating stretchable surface.

Design/methodology/approach

A mathematical model is examined to study the heat and mass transport analysis of steady MHD Williamson fluid flow past a rotating stretchable surface. Impact of activation energy with newly introduced variable diffusion coefficient at the mass equation is considered. The transport phenomenon is modeled by using highly nonlinear PDEs which are then reduced into dimensionless form by using similarity transformation. The resulting equations are then solved with the aid of fifth-order Fehlberg method.

Findings

The rotating fluid, heat and mass transport effects are analyzed for different values of parameters on velocity, energy and diffusion distributions. Parameters like the rotation parameter, Hartmann number and Weissenberg number control the flow field. In addition, the solar radiation, Joule heating, Prandtl number, thermal conductivity, concentration diffusion coefficient and activation energy control the temperature and concentration profiles inside the stretching surface. It can be analyzed that for higher values of thermal conductivity, Eckret number and solar radiation parameter the temperature profile increases, whereas opposite behavior is noticed for Prandtl number. Moreover, for increasing values of temperature difference parameter and thermal diffusion coefficient, the concentration profile shows reducing behavior.

Originality/value

This paper is useful for researchers working in mathematical and theoretical physics. Moreover, numerical results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 October 2015

Zhiyi Yu, Baoshan Zhu and Shuliang Cao

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was…

2127

Abstract

Purpose

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was carried out within the framework of two-fluid model. The purpose of this paper is to clarify the relative importance of various interphase forces on the mixed transport process, and the findings herein will be a base for the future study on the mechanism of the gas blockage phenomenon, which is the most challenging issue for such pumps.

Design/methodology/approach

Four types of interphase forces, i.e. drag force, lift force, virtual mass force and turbulent dispersion force (TDF) were taken into account. By comparing with the experiment in the respect of the head performance, the effectiveness of the numerical model was validated. In conditions of different inlet gas void fractions, bubble diameters and rotational speeds, the magnitude analyses were made for the interphase forces.

Findings

The results demonstrate that the TDF can be neglected in the running of the multiphase rotodynamic pump; the drag force is dominant in the impeller region and the outlet extended region. The sensitivity analyses of the bubble diameter and the rotational speed were also performed. It is found that larger bubble size is accompanied by smaller predicted drag but larger predicted lift and virtual mass, while the increase of the rotational speed can raise all the interphase forces mentioned above.

Originality/value

This paper has revealed the magnitude information and the relative importance of the interphase forces in a multiphase rotodynamic pump.

Details

Engineering Computations, vol. 32 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 30 September 2021

Thakshila Samarakkody and Heshan Alagalla

This research is designed to optimize the business process of a green tea dealer, who is a key supply chain partner of the Sri Lankan tea industry. The most appropriate trips for…

1331

Abstract

Purpose

This research is designed to optimize the business process of a green tea dealer, who is a key supply chain partner of the Sri Lankan tea industry. The most appropriate trips for each vehicle in multiple trip routing systems are identified to minimize the total cost by considering the traveling distance.

Design/methodology/approach

The study has followed the concepts in vehicle routing problems and mixed-integer programming mathematical techniques. The model was coded with the Python programming language and was solved with the CPLEX Optimization solver version 12.10. In total, 20 data instances were used from the subjected green tea dealer for the validation of the model.

Findings

The result of the numerical experiment showed the ability to access supply over the full capacity of the available fleet. The model achieved optimal traveling distance for all the instances, with the capability of saving 17% of daily transpiration cost as an average.

Research limitations/implications

This study contributes to the three index mixed-integer programing model formulation through in-depth analysis and combination of several extensions of vehicle routing problem.

Practical implications

This study contributes to the three index mixed-integer programming model formulation through in-depth analysis and combination of several extensions of the vehicle routing problem.

Social implications

The proposed model provides a cost-effective optimal routing plan to the green tea dealer, which satisfies all the practical situations by following the multiple trip vehicle routing problems. Licensee green tea dealer is able to have an optimal fleet size, which is always less than the original fleet size. Elimination of a vehicle from the fleet has the capability of reducing the workforce. Hence, this provides managerial implication for the optimal fleet sizing and route designing.

Originality/value

Developing an optimization model for a tea dealer in Sri Lankan context is important, as this a complex real world case which has a significant importance in export economy of the country and which has not been analyzed or optimized through any previous research effort.

Details

Modern Supply Chain Research and Applications, vol. 3 no. 4
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 14 May 2019

Yuqiang Wang, Yuguang Wei, Hua Shi, Xinyu Liu, Liyuan Feng and Pan Shang

The purpose of this paper is to study the unit train make-up scheme for loaded direction in the heavy haul railway.

Abstract

Purpose

The purpose of this paper is to study the unit train make-up scheme for loaded direction in the heavy haul railway.

Design/methodology/approach

A 0-1 nonlinear integer programming model with the aim of minimizing the idling period between actual train arrival time and expected train arrival time for all loaded unit trains are proposed.

Findings

The proposed model is applied into a case study based on Daqin heavy haul railway. Results show that the proposed model can offer operators an optimal unit train make-up scheme for loaded direction in heavy haul railway.

Originality/value

The proposed model can offer operators an optimal unit train make-up scheme for loaded direction in heavy haul railway.

Details

Smart and Resilient Transportation, vol. 1 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 13 July 2021

Matteo Davide Lorenzo Dalla Vedova and Pier Carlo Berri

The purpose of this paper is to propose a new simplified numerical model, based on a very compact semi-empirical formulation, able to simulate the fluid dynamics behaviors of an…

1105

Abstract

Purpose

The purpose of this paper is to propose a new simplified numerical model, based on a very compact semi-empirical formulation, able to simulate the fluid dynamics behaviors of an electrohydraulic servovalve taking into account several effects due to valve geometry (e.g. flow leakage between spool and sleeve) and operating conditions (e.g. variable supply pressure or water hammer).

Design/methodology/approach

The proposed model simulates the valve performance through a simplified representation, deriving from the linearized approach based on pressure and flow gains, but able to evaluate the mutual interaction between boundary conditions, pressure saturation and leak assessment. Its performance was evaluated comparing with other fluid dynamics numerical models (a detailed physics-based high-fidelity one and other simplified models available in the literature).

Findings

Although still showing some limitations attributable to its simplified formulation, the proposed model overcomes several deficiencies typical of the most common fluid dynamic models available in the literature, describing the water hammer and the nonlinear dependence of the delivery differential pressure with the spool displacement.

Originality/value

Although still based on a simplified formulation with reduced computational costs, the proposed model introduces a new nonlinear approach that, approximating with suitable precision the pressure-flow fluid dynamic characteristic of a servovalve, overcomes the shortcomings typical of such models.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 13 February 2020

John A. Kearby, Ryan D. Winz, Thom J. Hodgson, Michael G. Kay, Russell E. King and Brandon M. McConnell

The purpose of this paper is to investigate US noncombatant evacuation operations (NEO) in South Korea and devise planning and management procedures that improve the efficiency of…

3141

Abstract

Purpose

The purpose of this paper is to investigate US noncombatant evacuation operations (NEO) in South Korea and devise planning and management procedures that improve the efficiency of those missions.

Design/methodology/approach

It formulates a time-staged network model of the South Korean noncombatant evacuation system as a mixed integer linear program to determine an optimal flow configuration that minimizes the time required to complete an evacuation. This solution considers the capacity and resource constraints of multiple transportation modes and effectively allocates the limited assets across a time-staged network to create a feasible evacuation plan. That solution is post-processed and a vehicle routing procedure then produces a high resolution schedule for each individual asset throughout the entire duration of the NEO.

Findings

This work makes a clear improvement in the decision-making and resource allocation methodology currently used in a NEO on the Korea peninsula. It immediately provides previously unidentifiable information regarding the scope and requirements of a particular evacuation scenario and then produces an executable schedule for assets to facilitate mission accomplishment.

Originality/value

The significance of this work is not relegated only to evacuation operations on the Korean peninsula; there are numerous other NEO and natural disaster related scenarios that can benefit from this approach.

Details

Journal of Defense Analytics and Logistics, vol. 4 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 29 November 2018

Philipp Galkin, Carlo Andrea Bollino and Tarek Atalla

China is a major energy import powerhouse, its trade deals have significant impact on international energy trade and global energy markets. The purpose of this paper is to explore…

5230

Abstract

Purpose

China is a major energy import powerhouse, its trade deals have significant impact on international energy trade and global energy markets. The purpose of this paper is to explore the role of energy in China’s preferential trade agreements (PTAs) and their impact on Chinese imports of oil, gas and coal.

Design/methodology/approach

An extended trade gravity model framework is applied to explore the dynamics of China’s annualized energy import flows from the 22 economies that have PTAs with it for the period 1995–2015.

Findings

The effect of PTAs on trade patterns varies across the product groups and agreement clauses. The dominant factor affecting trade flows of coal, crude oil and oil products is the average tariff level. Its impact is less significant for gas imports, which are more affected by policy arrangements represented by a PTA variable. The depth and scope of a PTA do not affect Chinese energy imports patterns.

Research limitations/implications

This paper is focused on exploring the effect of China’s trade and foreign relations strategies on its energy imports through the prism of its PTAs. Estimating the direct impact of China’s initiatives in the areas of trade, investment, security, culture, etc., on its trade flows of energy products and other product groups using the methodological framework proposed in this study would contribute to better understanding of the issue.

Practical implications

The findings can assist both China and energy exporting countries that target Chinese market in better understanding the drivers of trade flows of energy products and design their PTA strategies accordingly.

Originality/value

This study applies the trade gravity model framework to assess the impact of specific components of preferential trade agreements – tariff reduction and depth and scope of agreement – on energy trade flows differentiated by product group.

Details

International Journal of Emerging Markets, vol. 13 no. 6
Type: Research Article
ISSN: 1746-8809

Keywords

Open Access
Article
Publication date: 26 May 2023

Mpho Trinity Manenzhe, Arnesh Telukdarie and Megashnee Munsamy

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

1729

Abstract

Purpose

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

Design/methodology/approach

The extant literature in physical assets maintenance depicts that poor maintenance management is predominantly because of a lack of a clearly defined maintenance work management process model, resulting in poor management of maintenance work. This paper solves this complex phenomenon using a combination of conceptual process modeling and system dynamics simulation incorporating 4IR technologies. A process for maintenance work management and its control actions on scheduled maintenance tasks versus unscheduled maintenance tasks is modeled, replicating real-world scenarios with a digital lens (4IR technologies) for predictive maintenance strategy.

Findings

A process for maintenance work management is thus modeled and simulated as a dynamic system. Post-model validation, this study reveals that the real-world maintenance work management process can be replicated using system dynamics modeling. The impact analysis of 4IR technologies on maintenance work management systems reveals that the implementation of 4IR technologies intensifies asset performance with an overall gain of 27.46%, yielding the best maintenance index. This study further reveals that the benefits of 4IR technologies positively impact equipment defect predictability before failure, thereby yielding a predictive maintenance strategy.

Research limitations/implications

The study focused on maintenance work management system without the consideration of other subsystems such as cost of maintenance, production dynamics, and supply chain management.

Practical implications

The maintenance real-world quantitative data is retrieved from two maintenance departments from company A, for a period of 24 months, representing years 2017 and 2018. The maintenance quantitative data retrieved represent six various types of equipment used at underground Mines. The maintenance management qualitative data (Organizational documents) in maintenance management are retrieved from company A and company B. Company A is a global mining industry, and company B is a global manufacturing industry. The reliability of the data used in the model validation have practical implications on how maintenance work management system behaves with the benefit of 4IR technologies' implementation.

Social implications

This research study yields an overall benefit in asset management, thereby intensifying asset performance. The expected learnings are intended to benefit future research in the physical asset management field of study and most important to the industry practitioners in physical asset management.

Originality/value

This paper provides for a model in which maintenance work and its dynamics is systematically managed. Uncontrollable corrective maintenance work increases the complexity of the overall maintenance work management. The use of a system dynamic model and simulation incorporating 4IR technologies adds value on the maintenance work management effectiveness.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of 820