Search results

1 – 10 of over 1000
Article
Publication date: 25 January 2024

Mauro Minervino and Renato Tognaccini

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb…

Abstract

Purpose

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb vector-based far-field methods are used at the scope, and the paper starts with extending recent steady compressible formulas to the unsteady regime.

Design/methodology/approach

Exact vortical force formulas are derived considering inertial or non-inertial frames, viscous or inviscid flows, fixed or moving bodies. Numerical applications to a NACA0012 airfoil oscillating in pure plunging motion are illustrated, considering subsonic and transonic flow regimes. The total force accuracy and sensitivity to the control volume size is first analysed, then the axial force is decomposed and results are compared to the inviscid force (thrust) and to the steady force (drag).

Findings

Two total axial force decompositions in thrust and drag contributions are proposed, providing satisfactory results. An additional force decomposition is also formulated, which is independent of the arbitrary pole appearing in vortical formulas. Numerical inaccuracies encountered in inertial reference frames are eliminated, and the extended formulation also allows obtaining an accurate force prediction in presence of shock waves.

Originality/value

No thrust/drag bookkeeping methodology was actually available for oscillating airfoils in viscous and compressible flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Daniel E.S. Rodrigues, Jorge Belinha and Renato Natal Jorge

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value…

Abstract

Purpose

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value industrial sectors mainly due to parts' anisotropy (related to the deposition strategy) and residual stresses (caused by successive heating cycles). Thus, this study aims to investigate the process improvement and the optimization of the printed parts.

Design/methodology/approach

In this work, a meshless technique – the Radial Point Interpolation Method (RPIM) – is used to numerically simulate the viscoplastic extrusion process – the initial phase of the FFF. Unlike the FEM, in meshless methods, there is no pre-established relationship between the nodes so the nodal mesh will not face mesh distortions and the discretization can easily be modified by adding or removing nodes from the initial nodal mesh. The accuracy of the obtained results highlights the importance of using meshless techniques in this field.

Findings

Meshless methods show particular relevance in this topic since the nodes can be distributed to match the layer-by-layer growing condition of the printing process.

Originality/value

Using the flow formulation combined with the heat transfer formulation presented here for the first time within an in-house RPIM code, an algorithm is proposed, implemented and validated for benchmark examples.

Article
Publication date: 25 December 2023

Fatima Harbate, Nouh Izem, Mohammed Seaid and Dia Zeidan

The purpose of this paper is to investigate the two-phase flow problems involving gas–liquid mixture.

Abstract

Purpose

The purpose of this paper is to investigate the two-phase flow problems involving gas–liquid mixture.

Design/methodology/approach

The governed equations consist of a range of conservation laws modeling a classification of two-phase flow phenomena subjected to a velocity nonequilibrium for the gas–liquid mixture. Effects of the relative velocity are accounted for in the present model by a kinetic constitutive relation coupled to a collection of specific equations governing mass and volume fractions for the gas phase. Unlike many two-phase models, the considered system is fully hyperbolic and fully conservative. The suggested relaxation approach switches a nonlinear hyperbolic system into a semilinear model that includes a source relaxation term and characteristic linear properties. Notably, this model can be solved numerically without the use of Riemann solvers or linear iterations. For accurate time integration, a high-resolution spatial reconstruction and a Runge–Kutta scheme with decreasing total variation are used to discretize the relaxation system.

Findings

The method is used in addressing various nonequilibrium two-phase flow problems, accompanied by a comparative study of different reconstructions. The numerical results demonstrate the suggested relaxation method’s high-resolution capabilities, affirming its proficiency in delivering accurate simulations for flow regimes characterized by strong shocks.

Originality/value

While relaxation methods exhibit notable performance and competitive features, as far as we are aware, there has been no endeavor to address nonequilibrium two-phase flow problems using these methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 January 2024

Francesco Romanò, Mario Stojanović and Hendrik C. Kuhlmann

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the…

Abstract

Purpose

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the surrounding ambient gas.

Design/methodology/approach

Numerical solutions for the two-fluid model are computed covering a wide parametric space, making a total of 2,800 numerical flow simulations. Based on the computed data, a reduced single-fluid model for the liquid phase is devised, in which the heat transfer between the liquid and the gas is modeled by Newton’s heat transfer law, albeit with a space-dependent Biot function Bi(z), instead of a constant Biot number Bi.

Findings

An explicit robust fit of Bi(z) is obtained covering the whole range of parameters considered. The single-fluid model together with the Biot function derived yields very accurate results at much lesser computational cost than the corresponding two-phase fully-coupled simulation required for the two-fluid model.

Practical implications

Using this novel Biot function approach instead of a constant Biot number, the critical Reynolds number can be predicted much more accurately within single-phase linear stability solvers.

Originality/value

The Biot function for thermocapillary liquid bridges is derived from the full multiphase problem by a robust multi-stage fit procedure. The derived Biot function reproduces very well the theoretical boundary layer scalings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2024

Deepika Parmar, S.V.S.S.N.V.G. Krishna Murthy, B.V. Rathish Kumar and Sumant Kumar

This study aims to analyze the impact of fractional derivatives on heat transfer and entropy generation during transient free convection inside various complex porous enclosures…

Abstract

Purpose

This study aims to analyze the impact of fractional derivatives on heat transfer and entropy generation during transient free convection inside various complex porous enclosures, such as triangle, L-shape and square-containing wavy surfaces. These porous enclosures are saturated with Cu-water nanofluid and subjected to the influence of a uniform magnetic field.

Design/methodology/approach

In the present study, Darcy’s model is used for the momentum transport equation in the porous matrix. Additionally, the Caputo time fractional derivative is introduced in the energy equation to assess the heat transfer phenomenon. Furthermore, the total entropy generation has been computed by combining the entropy generation due to fluid friction (Sff), heat transfer (Sht) and magnetic field (Smf). The complete mathematical model is further simulated using the penalty finite element method, and the Caputo time derivative term is approximated using the L1 scheme. The study is conducted for various ranges of the Rayleigh number (102Ra104), Hartmann number (0Ha20) and fractional order parameter (0<α<1) with respect to time.

Findings

It has been observed that the fractional order parameter α governs the characteristics of entropy generation and heat transfer within the selected range of parameters. The Bejan number associated with heat transfer (Beht), fluid friction (Beff) and magnetic field (Bemf) further demonstrate the dominance of flow irreversibilities. It becomes evident that the initial evolution state of streamlines, isotherms and local entropy varies according to the choice of α. Additionally, increasing Ra values from 102 to 104 shows that the heat transfer rate increases by 123.8% for a square wavy enclosure, 7.4% for a triangle enclosure and 69.6% for an L-shape enclosure. Moreover, an increase in the value of Ha leads to a reduction in heat transfer rates and entropy generation. In this case, Bemf1 shows the dominance of the magnetic field irreversibility in the total entropy generation.

Practical implications

Recently, fractional-order models have been widely used to express numerous physical phenomena, such as anomalous diffusion and dispersion in complex viscoelastic porous media. These models offer a more accurate representation of physical reality that classical models fail to capture; this is why they find a broad range of applications in science and engineering.

Originality/value

The fractional derivative model is used to illustrate the flow pattern, heat transfer and entropy-generating characteristics under the influence of a magnetic field. Furthermore, to the best of the author’s knowledge, a fractional-derivative-based mathematical model for the entropy generation phenomenon in complex porous enclosures has not been previously developed or studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2024

Muhammed Turan Aslan, Bahattin Kanber, Hasan Demirtas and Bilal Sungur

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Abstract

Purpose

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Design/methodology/approach

An experimental setup was designed, experiments were conducted and the obtained results were compared with the finite element results. The deformations were measured according to various flow rates of electrolyte. In finite element calculations, the pressure distribution created by the electrolyte on the blade surface was obtained in the ANSYS® (A finite element analysis software) Fluent software and transferred to the static structural where the deformation analysis was carried out. Three different parameters were examined, namely blade thickness, blade material and electrolyte pressure on blade disk caused by mass flow rate. The deformation results were compared with the gap distances between cathode and anode.

Findings

Large deformations were obtained at the free end of the blade and the most curved part of it. The appropriate pressure values for the electrolyte to be used in the production of blisk blades were proposed numerically. It has been determined that high pressure applications are not suitable for gap distance lower than 0.5 mm.

Originality/value

When the literature is examined, it is required that the high speed flow of the electrolyte is desired in order to remove the parts that are separated from the anode from the machining area during electrochemical machining. However, the electrolyte flowing at high speeds causes high pressure in the blisk blades, excessive deformation and vibration of the machined part, and as a result, contact of the anode with the cathode. This study provides important findings for smooth electro chemical machining at high electrolyte flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 November 2023

Jianbin Luo, Yuanhao Tie, Ke Mi, Yajuan Pan, Lifei Tang, Yuan Li, Hongxiang Xu, Zhonghang Liu, Mingsen Li and Chunmei Jiang

The purpose of this paper is to investigate the optimal average drag coefficient of the Ahmed body for mixed platoon driving under crosswind and no crosswind conditions using the…

Abstract

Purpose

The purpose of this paper is to investigate the optimal average drag coefficient of the Ahmed body for mixed platoon driving under crosswind and no crosswind conditions using the response surface optimization method. This study has extraordinary implications for the planning of future intelligent transportation.

Design/methodology/approach

First, the single vehicle and vehicle platoon models are validated. Second, the configuration with the lowest average drag coefficient under the two conditions is obtained by response surface optimization. At the same time, the aerodynamic characteristics of the mixed platoon driving under different conditions are also analyzed.

Findings

The configuration with the lowest average drag coefficient under no crosswind conditions is 0.3 L for longitudinal spacing and 0.8 W for lateral spacing, with an average drag coefficient of 0.1931. The configuration with the lowest average drag coefficient under crosswind conditions is 10° for yaw angle, 0.25 L for longitudinal spacing, and 0.8 W for lateral spacing, with an average drag coefficient of 0.2251. Compared to the single vehicle, the average drag coefficients for the two conditions are reduced by 25.1% and 41.3%, respectively.

Originality/value

This paper investigates the lowest average drag coefficient for mixed platoon driving under no crosswind and crosswind conditions using a response surface optimization method. The computational fluid dynamics (CFD) results of single vehicle and vehicle platoon are compared and verified with the experimental results to ensure the reliability of this study. The research results provide theoretical reference and guidance for the planning of intelligent transportation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 December 2023

Mustafa Çimen, Damla Benli, Merve İbiş Bozyel and Mehmet Soysal

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation…

Abstract

Purpose

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation operations, induce a significant economic impact. Despite the increasing academic attention to the field, literature still fails to match the needs of and opportunities in the growing industrial practices. In particular, the literature can grow upon the ideas on sustainability, Industry 4.0 and collaboration, which shape future practices not only in logistics but also in many other industries. This review has the potential to enhance and accelerate the development of relevant literature that matches the challenges confronted in industrial problems. Furthermore, this review can help to explore the existing methods, algorithms and techniques employed to address this problem, reveal directions and generate inspiration for potential improvements.

Design/methodology/approach

This study provides a literature review on VAPs, focusing on quantitative models that incorporate any of the following emerging logistics trends: sustainability, Industry 4.0 and logistics collaboration.

Findings

In the literature, sustainability interactions have been limited to environmental externalities (mostly reducing operational-level emissions) and economic considerations; however, emissions generated throughout the supply chain, other environmental externalities such as waste and product deterioration, or the level of stakeholder engagement, etc., are to be monitored in order to achieve overall climate-neutral services to the society. Moreover, even though there are many types of collaboration (such as co-opetition and vertical collaboration) and Industry 4.0 opportunities (such as sharing information and comanaging distribution operations) that could improve vehicle allocation operations, these topics have not yet received sufficient attention from researchers.

Originality/value

The scientific contribution of this study is twofold: (1) This study analyses decision models of each reviewed article in terms of decision variable, constraint and assumption sets, objectives, modeling and solving approaches, the contribution of the article and the way that any of sustainability, Industry 4.0 and collaboration aspects are incorporated into the model. (2) The authors provide a discussion on the gaps in the related literature, particularly focusing on practical opportunities and serving climate-neutrality targets, carried out under four main streams: logistics collaboration possibilities, supply chain risks, smart solutions and various other potential practices. As a result, the review provides several gaps in the literature and/or potential research ideas that can improve the literature and may provide positive industrial impacts, particularly on how logistics collaboration may be further engaged, which supply chain risks are to be incorporated into decision models, and how smart solutions can be employed to cope with uncertainty and improve the effectiveness and efficiency of operations.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 16 August 2023

Lucilla Coelho de Almeida, Joao Americo Aguirre Oliveira Junior and Jian Su

This paper aims to present a novel approach for computing particle temperatures in simulations coupling computational fluid dynamics (CFD) and discrete element method (DEM) to…

Abstract

Purpose

This paper aims to present a novel approach for computing particle temperatures in simulations coupling computational fluid dynamics (CFD) and discrete element method (DEM) to predict flow and heat transfer in fluidized beds of thermally thick spherical particles.

Design/methodology/approach

An improved lumped formulation based on Hermite-type approximations for integrals to relate surface temperature to average temperature and surface heat flux is used to overcome the limitations of classical lumped models. The model is validated through comparisons with analytical solutions for a convectively cooled sphere and experimental data for a fixed particle bed. The coupled CFD-DEM model is then applied to simulate a Geldart D bubbling fluidized bed, comparing the results to those obtained using the classical lumped model.

Findings

The validation cases demonstrate that ignoring internal thermal resistance can significantly impact the temperature in cases where the Biot number is greater than 0.1. The results for the fixed bed case clearly demonstrate that the proposed method yields significantly improved outcomes compared to the classical model. The fluidized bed results show that surface temperature can deviate considerably from the average temperature, underscoring the importance of accurately accounting for surface temperature in convective heat transfer predictions and surface processes.

Originality/value

The proposed approach offers a physically more consistent simulation without imposing a significant increase in computational cost. The improved lumped formulation can be easily and inexpensively integrated into a typical DEM solver workflow to predict heat transfer for spherical particles, with important implications for various industrial applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2023

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square…

Abstract

Purpose

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal and triangular thermal systems under fluid volume constraints, with the aim of optimizing thermal behavior in diverse applications.

Design/methodology/approach

The study uses numerical simulations based on a finite element-based technique to analyze the effects of the Rayleigh number (Ra), Hartmann number (Ha), magnetic field orientation (γ) and nanoparticle concentration (ζ) on heat transfer characteristics and thermodynamic entropy production.

Findings

The key findings reveal that the geometrical design significantly influences fluid velocity, heat transfer and irreversibility. Trapezoidal thermal systems outperform square systems, while triangular systems achieve optimal enhancement. Nanoparticle concentration enhances heat transfer and flow strength at higher Rayleigh numbers. The magnetic field intensity has a significant impact on fluid flow and heat transport in natural convection, with higher Hartmann numbers resulting in reduced flow strength and heat transfer. The study also highlights the influence of various parameters on thermodynamic entropy production.

Research limitations/implications

Further research can explore additional geometries, parameters and boundary conditions to expand the understanding of enclosure shape effects on MHD nanofluidic flow and heat transfer. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This study provides valuable insights into the impact of enclosure shape on heat transfer performance in MHD nanofluid flow systems. The findings contribute to the optimization of thermal behavior in applications such as electronics cooling and energy systems. The comparison of different enclosure shapes and the analysis of thermodynamic entropy production add novelty to the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000