Search results

1 – 10 of over 72000
Article
Publication date: 25 January 2022

Beibei Li, Ruirui Li, Xiumei Liu, Qiao Zhao, Jichao Ma and Jie He

Flow force is one of the crucial factors affecting the performance of conical throttle valves. The purpose of this paper is to determine the relationship between the flow force

Abstract

Purpose

Flow force is one of the crucial factors affecting the performance of conical throttle valves. The purpose of this paper is to determine the relationship between the flow force and operating parameters of the conical throttle valve.

Design/methodology/approach

The flow force of the throttle valve can be obtained by the difference between the axial force and static pressure on the valve spool. In this paper, the internal fluid is divided into two regions and the axial force and static pressure are obtained, respectively. In addition, a two-dimensional axisymmetric simulation model and experimental test are carried out to validate the results of the flow force.

Findings

It can be seen that the theoretical, simulation and experimental results exhibit high agreement with each other and the error between them decreases with the increase in the size of the opening. The curves of pressure distribution reveal that the pressure on the spool first decreases then increases when it reaches the minimum pressure at the orifice. Additionally, the minimum pressure decreases with the increase of opening and pressure difference. The results also indicate that the increase in the size of the opening and inlet pressure has a positive effect on the flow force. However, the increase in outlet pressure has a negative effect on the flow force.

Originality/value

In this paper, the flow force calculation model of conical throttle valve is established and the influence of operating parameters on the flow force of conical throttle valve is studied.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 July 2014

Riccardo Amirante, Luciano Andrea Catalano and Paolo Tamburrano

The purpose of this paper is to present a full 3D Computational Fluid Dynamics (CFD) analysis of the flow field through hydraulic directional proportional valves, in order to…

Abstract

Purpose

The purpose of this paper is to present a full 3D Computational Fluid Dynamics (CFD) analysis of the flow field through hydraulic directional proportional valves, in order to accurately predict the flow forces acting on the spool and to overcome the limitations of two-dimensional (2D) and simplified three-dimensional (3D) models.

Design/methodology/approach

A full 3D CAD representation is proposed as a general approach to reproduce the geometry of an existing valve in full detail; then, unstructured computational grids, which identify peculiar positions of the spool travel, are generated by means of the mesh generation tool Gambit. The computational grids are imported into the commercial CFD code Fluent, where the flow equations are solved assuming that the flow is steady and incompressible. To validate the proposed computational procedure, the predicted flow rates and flow forces are compared with the corresponding experimental data.

Findings

The superposition between numerical and experimental curves demonstrates that the proposed full 3D numerical analysis is more effective than the simplified 3D flow model that was previously proposed by the same authors.

Practical implications

The presented full 3D fluid dynamic analysis can be employed for the fluid-dynamic design optimization of the sliding spool and, more generally, of the internal profiles of the valve, with the objective of reducing the flow forces and thus the required control force.

Originality/value

The paper proposes a new computational strategy that is capable of recognizing all 3D geometrical details of a hydraulic directional proportional valve and that provides a significant improvement with respect to 2D and partially 3D approaches.

Details

Engineering Computations, vol. 31 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 September 2022

Ying Yu, Huan Huang, Shuo Wang, Shuaishuai Li and Yu Wang

The mesoscale structure (MS) has a significant impact on the mechanical performance of parts made by additive manufacturing (AM). This paper aims to explore the design and…

Abstract

Purpose

The mesoscale structure (MS) has a significant impact on the mechanical performance of parts made by additive manufacturing (AM). This paper aims to explore the design and fabrication of force-flow guided reinforcement mesoscale structure (FFRMS) compared with the homogeneous mesoscale structure (HMS), which is inconsistent with the stress field for a given load condition. Some cases were presented to demonstrate the mechanical properties of FFRMS in terms of MS combined with quasi-isotropy and anisotropy.

Design/methodology/approach

The paper consists of four main sections: the first developed the concept of FFRMS design based on HMS, the second explored volume fraction control for the proportion of force-flow lines in terms of mechanical property requirement, and the third presented a sequence stacking theory and practical manufacturing process framework and the final sections provided some application case studies.

Findings

The main contributions of this study were the definition and development of the FFRMS concept, the application framework and the original case studies. As an example, a typical lug designed with the proposed FFRMS method was fabricated by three different AM processes. The test results showed that both the strength and stiffness of the specimens are improved greatly by using the FFRMS design method.

Originality/value

The superposition of HMS as the basement and force-flow as an indication of the stiffener, leading to a heterogeneous structure, which exhibits more efficient and diversified means compared with the traditional way of increasing the HMS density merely.

Details

Rapid Prototyping Journal, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 November 2019

Xiaoqi Jia, Sheng Yuan, Zuchao Zhu and Baoling Cui

Instantaneous radial force induced from unsteady flow will intensify vibration noise of the centrifugal pump, especially under off-design working conditions, which will affect…

Abstract

Purpose

Instantaneous radial force induced from unsteady flow will intensify vibration noise of the centrifugal pump, especially under off-design working conditions, which will affect safety reliability of pump operation in severe cases. This paper aims to conduct unsteady numerical computation on one centrifugal pump; thus, unsteady fluid radial force upon the impeller and volute is obtained, so as to study the evolution law of instantaneous radial force, the internal relationship between radial force and pressure pulsation, the relationship among each composition of radial force that the impeller received and the influence of leakage rate of front and back chamber on radial force.

Design/methodology/approach

The unsteady numerical simulation with SST k-ω turbulence model was carried out for a low specific-speed centrifugal pump using computational fluid dynamics codes FLUENT. The performance tests and pressure tests were conducted by a closed loop system. The performance curves and the pressure distribution from numerical simulation agree with that of the experiment conducted. The unsteady pressure distributions and the instantaneous radial forces induced from unsteady flow were analyzed under different flow rates. Contribution degrees of three components of the radial force on the impeller and the relation between the radial force and leakage rate were analyzed.

Findings

Radial force on the volute and pressure pulsation on the volute wall have the same distribution tendency, but in contrast to the distribution trend of the radial force on the impeller. In the component of radial force that the impeller received, radial force on the blade accounts for the main position. With the decrease of flow rate, ratio of the radial force on front and back casings will be increased; under large flow rate, vortex and flow blockage at volute section will enhance the pressure and radial force fluctuation greatly, and the pulsation degree may be much more intense than that of a smaller flow rate.

Originality/value

This paper revealed the relation of the radial force and the pressure pulsation. Meanwhile, contribution degrees of three components of the radial force on the impeller under different working conditions as well as the relation between the radial force and leakage rate of front and rear chambers were analyzed.

Details

Engineering Computations, vol. 37 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 January 2024

Mauro Minervino and Renato Tognaccini

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb…

Abstract

Purpose

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb vector-based far-field methods are used at the scope, and the paper starts with extending recent steady compressible formulas to the unsteady regime.

Design/methodology/approach

Exact vortical force formulas are derived considering inertial or non-inertial frames, viscous or inviscid flows, fixed or moving bodies. Numerical applications to a NACA0012 airfoil oscillating in pure plunging motion are illustrated, considering subsonic and transonic flow regimes. The total force accuracy and sensitivity to the control volume size is first analysed, then the axial force is decomposed and results are compared to the inviscid force (thrust) and to the steady force (drag).

Findings

Two total axial force decompositions in thrust and drag contributions are proposed, providing satisfactory results. An additional force decomposition is also formulated, which is independent of the arbitrary pole appearing in vortical formulas. Numerical inaccuracies encountered in inertial reference frames are eliminated, and the extended formulation also allows obtaining an accurate force prediction in presence of shock waves.

Originality/value

No thrust/drag bookkeeping methodology was actually available for oscillating airfoils in viscous and compressible flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 October 2022

Yang Zhou, Wenying Qu, Fan Zhou, Xinggang Li, Lijun Song and Qiang Zhu

This paper aims to understand the magnetohydrodynamics (MHD) mechanism in the molten pool under different modes of magnetic field. The comparison focuses on the Lorenz force

Abstract

Purpose

This paper aims to understand the magnetohydrodynamics (MHD) mechanism in the molten pool under different modes of magnetic field. The comparison focuses on the Lorenz force excitation and its effect on the melt flow and solidification parameters, intending to obtain practical references for the design of magnetic field-assisted laser directed energy deposition (L-DED) equipment.

Design/methodology/approach

A three-dimensional transient multi-physical model, coupled with MHD and thermodynamic, was established. The dimension and microstructure of the molten pool under a 0T magnetic field was used as a benchmark for accuracy verification. The interaction between the melt flow and the Lorenz force is compared under a static magnetic field in the X-, Y- and Z-directions, and also an oscillating and alternating magnetic field.

Findings

The numerical results indicate that the chaotic fluctuation of melt flow trends to stable under the magnetostatic field, while a periodically oscillating melt flow could be obtained by applying a nonstatic magnetic field. The Y and Z directional applied magnetostatic field shows the effective damping effect, while the two nonstatic magnetic fields discussed in this paper have almost the same effect on melt flow. Since the heat transfer inside the molten pool is dominated by convection, the application of a magnetic field has a limited effect on the temperature gradient and solidification rate at the solidification interface due to the convection mode of melt flow is still Marangoni convection.

Originality/value

This work provided a deeper understanding of the interaction mechanism between the magnetic field and melt flow inside the molten pool, and provided practical references for magnetic field-assisted L-DED equipment design.

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 November 2010

Esmail M.A. Mokheimer, S. Sami and B.S. Yilbas

This paper's aim is to examine flow and heat transfer through vertical channels between parallel plates, which is of prime importance in the design of cooling systems for…

Abstract

Purpose

This paper's aim is to examine flow and heat transfer through vertical channels between parallel plates, which is of prime importance in the design of cooling systems for electronic equipment such as that of finned cold plates in general, plate‐and‐frame heat exchangers, etc.

Design/methodology/approach

Numerical and analytical solutions are presented to investigate the heat transfer enhancement and the pressure drop reduction due to buoyancy effects (for buoyancy‐aided flow) for the developing laminar mixed convection in vertical channel between parallel plates in the vicinity of the critical values of the buoyancy parameter (Gr/Re)crt that are obtained analytically. The numerical solutions are presented for a wide range of the buoyancy parameters Gr/Re that cover both of buoyancy‐opposed and buoyancy‐aided flow situations under each of the isothermal boundary conditions under investigation.

Findings

Buoyancy parameters greater than the critical values result in building‐up the pressure downstream of the entrance such that the vertical channel might act as a thermal diffuser with possible incipient flow reversal. Locations at which the pressure gradient vanishes and the locations at which the pressure‐buildup starts have been numerically obtained and presented for all the investigated cases.

Research limitations/implications

The study is limited to the laminar flow situation.

Practical implications

The results clearly show that for buoyancy‐aided flow, the increase of the buoyancy parameter enhances the heat transfer and reduces the pressure drop across the vertical channel. These findings are very useful for cooling channel or chimney designs.

Originality/value

The study is original and presents new findings, since none of the previous studies reported the conditions for which pressure buildup might take place due to mixed convection in vertical channels between parallel plates.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2007

Youssef Azizi, Brahim Benhamou, Nicolas Galanis and Mohammed El‐Ganaoui

The objective of the present study is to investigate numerically the effects of thermal and buoyancy forces on both upward flow (UF) and downward flow (DF) of air in a vertical…

Abstract

Purpose

The objective of the present study is to investigate numerically the effects of thermal and buoyancy forces on both upward flow (UF) and downward flow (DF) of air in a vertical parallel‐plates channel. The plates are wetted by a thin liquid water film and maintained at a constant temperature lower than that of the air entering the channel.

Design/methodology/approach

The solution of the elliptical PDE modeling the flow field is based on the finite volume method.

Findings

Results show that buoyancy forces have an important effect on heat and mass transfers. Cases with evaporation and condensation have been investigated for both UF and DF. It has been established that the heat transfer associated with these phase changes (i.e. latent heat transfer) may be more or less important compared with sensible heat transfer. The importance of these transfers depends on the temperature and humidity conditions. On the other hand, flow reversal has been predicted for an UF with a relatively high temperature difference between the incoming air and the walls.

Originality/value

Contrary to most studies in channel heat and mass transfer with phase change, the mathematical model considers the full elliptical Navier‐Stokes equations. This allows one to compute situations of flow reversal.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2016

William Thollet, Guillaume Dufour, Xavier Carbonneau and Florian Blanc

The purpose of this paper is to explore a methodology that allows to represent turbomachinery rotating parts by replacing the blades with a body force field. The objective is to…

409

Abstract

Purpose

The purpose of this paper is to explore a methodology that allows to represent turbomachinery rotating parts by replacing the blades with a body force field. The objective is to capture interactions between a fan and an air intake at reduced cost, as compared to full annulus unsteady computations.

Design/methodology/approach

The blade effects on the flow are taken into account by adding source terms to the Navier-Stokes equations. These source terms give the proper amount of flow turning, entropy, and blockage to the flow. Two different approaches are compared: the source terms can be computed using an analytic model, or they can directly be extracted from RANS computations with the blade’s geometry.

Findings

The methodology is first applied to an isolated rotor test case, which allows to show that blockage effects have a strong impact on the performance of the rotor. It is also found that the analytic body force model underestimates the mass flow in the blade row for choked conditions. Finally, the body force approach is used to capture the coupling between a fan and an air intake at high angle of attacks. A comparison with full annulus unsteady computations shows that the model adequately captures the potential effects of the fan on the air intake.

Originality/value

To the authors’ knowledge, it is the first time that the analytic model used in this paper is combined with the blockage source terms. Furthermore, the capability of the model to deal with flows in choked conditions was never assessed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1993

J. ORFI, N. GALANIS and C.T. NGUYEN

The effects of tube inclination and Grashof number on the fully developed hydrodynamic and thermal fields are investigated numerically for laminar ascending flow of air and water…

Abstract

The effects of tube inclination and Grashof number on the fully developed hydrodynamic and thermal fields are investigated numerically for laminar ascending flow of air and water in uniformly heated circular tubes. The effects of the buoyancy induced secondary flow on the hydrodynamic and thermal fields are complex and strongly dependent on the Grashof number, the Prandtl number and the tube inclination. The influence of these parameters on the intensity of the secondary flow, on the distortion of the axial velocity profile and of the temperature field from the corresponding distributions for pure forced flow, as well as on the circumferential variation of the local shear stress and of the local Nusselt number are analysed. The average shear stress is higher than for pure forced flow and it increases with both the tube inclination and with the Grashof number. The average Nusselt number is higher than for pure forced flow and increases with the Grashof number. For a given fluid and Grashof number there exists an optimum tube inclination which maximizes the average Nusselt number. Correlations for the average Nusselt number in terms of Gr and Pr are presented for four different tube inclinations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 72000