Search results

1 – 10 of 106
Article
Publication date: 16 December 2019

Samer Ali, Zein Alabidin Shami, Ali Badran and Charbel Habchi

In this paper, self-sustained second mode oscillations of flexible vortex generator (FVG) are produced to enhance the heat transfer in two-dimensional laminar flow regime. The…

78

Abstract

Purpose

In this paper, self-sustained second mode oscillations of flexible vortex generator (FVG) are produced to enhance the heat transfer in two-dimensional laminar flow regime. The purpose of this study is to determine the critical Reynolds number at which FVG becomes more efficient than rigid vortex generators (RVGs).

Design/methodology/approach

Ten cases were studied with different Reynolds numbers varying from 200 to 2,000. The Nusselt number and friction coefficients of the FVG cases are compared to those of RVG and empty channel at the same Reynolds numbers.

Findings

For Reynolds numbers higher than 800, the FVG oscillates in the second mode causing a significant increase in the velocity gradients generating unsteady coherent flow structures. The highest performance was obtained at the maximum Reynolds number for which the global Nusselt number is improved by 35.3 and 41.4 per cent with respect to empty channel and rigid configuration, respectively. Moreover, the thermal enhancement factor corresponding to FVG is 72 per cent higher than that of RVG.

Practical implications

The results obtained here can help in the design of novel multifunctional heat exchangers/reactors by using flexible tabs and inserts instead of rigid ones.

Originality/value

The originality of this paper is the use of second mode oscillations of FVG to enhance heat transfer in laminar flow regime.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2019

Alireza Ghayour and Mahmoud Mani

The purpose of this paper is to compare the effects of two different configurations of plasma streamwise vortex generators (PSVG), including comb-type and mesh-type in controlling…

Abstract

Purpose

The purpose of this paper is to compare the effects of two different configurations of plasma streamwise vortex generators (PSVG), including comb-type and mesh-type in controlling flow. This is demonstrated on the NACA 0012 airfoil.

Design/methodology/approach

The investigations have been done experimentally at the various electric and aerodynamic conditions. The surface oil flow visualization method has been used to the better understanding of the flow physics and the interaction of the oncoming flow passing over the airfoil and the vortex generated by comb-type PSVG.

Findings

This paper demonstrates the potential capabilities of the mesh-type and comb-type PSVGs in controlling flow in unsteady operation. It was found that the vortex generated by the mesh-type PSVG in unsteady operation was an order of magnitude stronger than comb-type PSVG. The flow visualisation technic proved that only a part of the plasma actuator is effective in the condition that the actuator is installed only on a portion of the upper surface of the airfoil.

Originality/value

This paper experimentally confirms the capabilities of the mesh-type PSVG unsteady operation in compare with comb-type PSVG in controlling flow, whereby recommends using mesh-type PSVG in the leading edge in front of comb-type PSVG on the entire wingspan to prevent the stall.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 April 2014

Wei Wang, Spiridon Siouris and Ning Qin

The purpose of this article is to present numerical investigations of flow control with piezoelectric actuators on a backward facing step (BFS) and fluidic vortex generators on a…

Abstract

Purpose

The purpose of this article is to present numerical investigations of flow control with piezoelectric actuators on a backward facing step (BFS) and fluidic vortex generators on a NACA0015 aerofoil for the reattachment and separation control through the manipulation of the Reynolds stresses.

Design/methodology/approach

The unsteady flow phenomena associated with both devices are simulated using Spalart–Allmaras-based hybrid Reynolds averaged Navier-Stokes (RANS)/large eddy simulation (LES) models (detached eddy simulation (DES), delayed detached eddy simulation (DDES) and improved delayed detached eddy simulation (IDDES)), using an in-house computational fluid dynamics (CFD) solver. Results from these computations are compared with experimental observations, enabling their reliable assessment through the detailed investigation of the Reynolds stresses and also the separation and reattachment.

Findings

All the hybrid RANS/LES methods investigated in this article predict reasonable results for the BFS case, while only IDDES captures the separation point as measured in the experiments. The oscillating surface flow control method by piezoelectric actuators applied to the BFS case demonstrates that the Reynolds stresses in the controlled case decrease, and that a slightly nearer reattachment is achieved for the given actuation. The fluidic vortex generators on the surface of the NACA0015 case force the separated flow to fully reattach on the wing. Although skin friction is increased, there is a significant decrease in Reynolds stresses and an increase in lift to drag ratio.

Originality/value

The value of this article lies in the assessment of the hybrid RANS/LES models in terms of separation and reattachment for the cases of the backward-facing step and NACA0015 wing, and their further application in active flow control.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 7 November 2016

Babak Lotfi, Bengt Sunden and Qiu-Wang Wang

The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in…

416

Abstract

Purpose

The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver.

Design/methodology/approach

A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region.

Findings

Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs.

Originality/value

This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.

Article
Publication date: 1 April 1951

Ir. J. Meijer Drees and Ir. W.P. Hendal

In this paper results arc discussed of wind‐tunnel smoke tests with a small helicopter rotor. The test apparatus includes a specially developed hot‐wire smoke‐generator. An…

Abstract

In this paper results arc discussed of wind‐tunnel smoke tests with a small helicopter rotor. The test apparatus includes a specially developed hot‐wire smoke‐generator. An attempt is made to describe the flow pattern in the neighbourhood of a helicopter rotor in the vortex ring state by introducing the spread of the slipstream, causing an airbody around the rotor. By considering the proportions of this airbody the unpleasant behaviour of helicopters in the partial power‐off descent at low forward speeds can be more clearly understood.

Details

Aircraft Engineering and Aerospace Technology, vol. 23 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 28 May 2021

M.R. Saber and M.H. Djavareshkian

In the present research, the effect of the flexible shells method in unsteady viscous flow around airfoil has been studied. In the presented algorithm, due to the interaction of…

Abstract

Purpose

In the present research, the effect of the flexible shells method in unsteady viscous flow around airfoil has been studied. In the presented algorithm, due to the interaction of the aerodynamic forces and the structural stiffness (fluid-structural interaction), a geometrical deformation as the bump is created in the area where the shock occurs. This bump causes instead of compressive waves, a series of expansion waves that produce less drag and also improve the aerodynamic performance to be formed. The purpose of this paper is to reduce wave drag throughout the flight range. By using this method, we can be more effective than recent methods throughout the flight because if there is a shock, a bump will form in that area, and if the shock does not occur, the shape of the airfoil will not change.

Design/methodology/approach

In this simulation pressure-based procedure to solve the Navier-Stokes equation with collocated finite volume formulation has been developed. For this purpose, a high-resolution scheme for fluid and structure simulation in transonic flows with an arbitrary Lagrangian-Eulerian method is considered. To simulate Navier-Stokes equations large eddy simulation model for compressible flow is used.

Findings

A new concept has been defined to reduce the transonic flow drag. To reduce drag force and increase the performance of airfoil in transonic flow, the shell can be considered flexible in the area of shock on the airfoil surface. This method refers to the use of smart materials in the aircraft wing shell.

Originality/value

The value of the paper is to develop a new approach to improve the aerodynamic performance and reduce drag force and the efficiency of the method throughout the flight. It is noticeable that the new algorithm can detect the shock region automatically; this point was disregarded in the previous studies. It is hoped that this research will open a door to significantly enhance transonic airfoil performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 April 2022

Jeena Joseph, Sathyabhama A. and Surya Sridhar

With aims to increase the aerodynamic efficiency of aerodynamic surfaces, study on flow control over these surfaces has gained importance. With the addition of flow control…

Abstract

Purpose

With aims to increase the aerodynamic efficiency of aerodynamic surfaces, study on flow control over these surfaces has gained importance. With the addition of flow control devices such as synthetic jets and vortex generators, the flow characteristics can be modified over the surface and, at the same time, enhance the performance of the body. One such flow control device is the tubercle. Inspired by the humpback whale’s flippers, these leading-edge serrations have improved the aerodynamic efficiency and the lift characteristics of airfoils and wings. This paper aims to discusses in detail the flow physics associated with tubercles and their effect on swept wings.

Design/methodology/approach

This study involves a series of experimental and numerical analyses that have been performed on four different wing configurations, with four different sweep angles corresponding to 0°, 10°, 20° and 30° at a low Reynolds number corresponding to Rec=100,000.

Findings

Results indicate that the effect of tubercles diminishes with an increase in wing sweep. A significant performance enhancement was observed in the stall and post-stall regions. The addition of tubercles led to a smooth post-stall lift characteristic compared to the sudden loss in the lift with regular wings. Among the four different wings under observation, it was found that tubercles were most effective on the 0° configuration (no sweep), showing a 10.8% increment in maximum lift and a 38.5% increase in the average lift generated in the post-stall region. Tubercles were least effective on 30° configuration. Furthermore, with an increase in wing sweep, co-rotating vortices were distinctly observed rather than counter-rotating vortices.

Originality/value

While extensive numerical and experimental studies have been performed on straight wings with tubercles, studies on the tubercle effect on swept wings at low Reynolds number are minimal and mainly experimental in nature. This study uses numerical methods to explore the complex flow physics associated with tubercles and their implementation on swept wings. This study can be used as an introductory study to implement passive flow control devices in the low Reynolds number regime.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 March 2021

Hashwini Lalchand Thadani, Fadia Dyni Zaaba, Muhammad Raimi Mohammad Shahrizal, Arjun Singh Jaj A. Jaspal Singh Jaj and Yun Ii Go

This paper aims to design an optimum vertical axis wind turbine (VAWT) and assess its techno-economic performance for wind energy harvesting at high-speed railway in Malaysia.

Abstract

Purpose

This paper aims to design an optimum vertical axis wind turbine (VAWT) and assess its techno-economic performance for wind energy harvesting at high-speed railway in Malaysia.

Design/methodology/approach

This project adopted AutoCAD and ANSYS modeling tools to design and optimize the blade of the turbine. The site selected has a railway of 30 km with six stops. The vertical turbines are placed 1 m apart from each other considering the optimum tip speed ratio. The power produced and net present value had been analyzed to evaluate its techno-economic viability.

Findings

Computational fluid dynamics (CFD) analysis of National Advisory Committee for Aeronautics (NACA) 0020 blade has been carried out. For a turbine with wind speed of 50 m/s and swept area of 8 m2, the power generated is 245 kW. For eight trains that operate for 19 h/day with an interval of 30 min in nonpeak hours and 15 min in peak hours, total energy generated is 66 MWh/day. The average cost saved by the train stations is RM 16.7 mil/year with battery charging capacity of 12 h/day.

Originality/value

Wind energy harvesting is not commonly used in Malaysia due to its low wind speed ranging from 1.5 to 4.5 m/s. Conventional wind turbine requires a minimum cut-in wind speed of 11 m/s to overcome the inertia and starts generating power. Hence, this paper proposes an optimum design of VAWT to harvest an unconventional untapped wind sources from railway. The research finding complements the alternate energy harvesting technologies which can serve as reference for countries which experienced similar geographic constraints.

Details

World Journal of Science, Technology and Sustainable Development, vol. 18 no. 2
Type: Research Article
ISSN: 2042-5945

Keywords

Article
Publication date: 9 January 2024

Fatih Selimefendigil and Hakan F. Oztop

This study aims to examine the effects of cross-flow and multiple jet impingement on conductive panel cooling performance when subjected to uniform magnetic field effects. The…

Abstract

Purpose

This study aims to examine the effects of cross-flow and multiple jet impingement on conductive panel cooling performance when subjected to uniform magnetic field effects. The cooling system has double rotating cylinders.

Design/methodology/approach

Cross-flow ratios (CFR) ranging from 0.1 to 1, magnetic field strength (Ha) ranging from 0 to 50 and cylinder rotation speed (Rew) ranging from −5,000 to 5,000 are the relevant parameters that are included in the numerical analysis. Finite element method is used as solution technique. Radial basis networks are used for the prediction of average Nusselt number (Nu), average surface temperature of the panel and temperature uniformity effects when varying the impacts of cross-flow, magnetic field and rotations of the double cylinder in the cooling channel.

Findings

The effect of CFR on cooling efficiency and temperature uniformity is favorable. By raising the CFR to the highest value under the magnetic field, the average Nu can rise by up to 18.6%, while the temperature drop and temperature difference are obtained as 1.87°C and 3.72°C. Without cylinders, magnetic field improves the cooling performance, while average Nu increases to 4.5% and 8.8% at CR = 0.1 and CR = 1, respectively. When the magnetic field is the strongest with cylinders in channel at CFR = 1, temperature difference (ΔT) is obtained as 2.5 °C. The rotational impacts on thermal performance are more significant when the cross-flow effects are weak (CFR = 0.1) compared to when they are substantial (CFR = 1). Cases without a cylinder have the worst performance for both weak and severe cross-flow effects, whereas using two rotating cylinders increases cooling performance and temperature uniformity for the conductive panel. The average surface temperature lowers by 1.2°C at CFR = 0.1 and 0.5°C at CFR = 1 when the worst and best situations are compared.

Originality/value

The outcomes are relevant in the design and optimization-based studies for electric cooling, photo-voltaic cooling and battery thermal management.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2017

Fangfang Xie, Dingyi Pan, Yao Zheng and Jianfeng Zou

The purpose of this paper is to propose a partitioned approach by coupling the smoothed profile method (SPM) and the Euler tension beam model in simulating a vortex-induced…

Abstract

Purpose

The purpose of this paper is to propose a partitioned approach by coupling the smoothed profile method (SPM) and the Euler tension beam model in simulating a vortex-induced vibration of both rigid and flexible cylinders at various reduced velocities.

Design/methodology/approach

For the fluid part, SPM in the framework of the spectral element method is adopted to simulate the flow. The advantage of SPM lies in modelling multiple complex shapes as it uses a fixed computational mesh without conformation to the geometry of the particles. For the structure part, an elastic-mounted rigid cylinder is considered in two-dimensional (2D) simulations, while a flexible cylinder with a Euler tension beam model is used in three-dimensional simulations.

Findings

Firstly, in the flow past a freely vibrating cylinder, the maximum vibration responses of the cylinder are about 0.73D and 0.1D in the y and x directions, respectively, which occur at the point Ur = 5.75 and are much higher than Ur = 5 in 2D simulations. It is found that the numerical results from the SPM solver are very consistent with those from the NEKTAR-Arbitrary Lagrangian Eulerian method (NEKTAR-ALE) solver or the NEKTAR-Fourier solver. Furthermore, the flow past the tandem cylinders is also investigated, where the upstream cylinder is static while the downstream one is free to vibrate. Specifically, the beating behaviour is captured from the vibration response of the freely vibrating cylinder under the reduced velocity of Ur = 6 with a gap distance of L = 3.5D.

Originality/value

The originality of the paper lies in coupling the SEM with the Euler beam model in simulating the vortex induced vibration (VIV) of flexible cylinders.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 106