Search results

1 – 10 of 678
Article
Publication date: 19 October 2015

Carlos Eduardo Díaz, Roemi Fernández, Manuel Armada and Felipe de Jesús García Gutiérrez

– This paper aims to provide an insight into recent advancements and developments of robotics for Natural Orifice Transluminal Surgery (NOTES) procedures.

Abstract

Purpose

This paper aims to provide an insight into recent advancements and developments of robotics for Natural Orifice Transluminal Surgery (NOTES) procedures.

Design/methodology/approach

Following an introduction that highlights the evolution from Minimally Invasive Surgery (MIS) to NOTES in the medical field, this paper reviews the main robotics systems that have been designed and implemented for MIS and NOTES, summarising their advantages and limitations and remarking the technological challenges and the requirements that still should be addressed and fulfilled.

Findings

The state-of-the-art presented in this paper shows that the majority of the platforms created for NOTES are laboratory prototypes, and their performances are still far from being optimal. New solutions are required to solve the problems confronted by the proposed systems such as the limited number of DOFs, the limited resolution, the optimal fixation and stiffening of the instruments for enabling stable and precise operation, the effective transmission of forces to the tip tools, the improvement of the force feedback feeling and the proper visualization and spatial orientation of the surgical field. Advances in robotics can contribute significantly to the development and future implementation of the NOTES procedure.

Originality/value

This paper highlights the current trends and challenges ahead in robotics applied to NOTES procedure.

Details

Industrial Robot: An International Journal, vol. 42 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 May 2017

Yue Ai, Bo Pan, Yili Fu and Shuguo Wang

Robot-assisted system for minimally invasive surgery (MIS) has been attracting more and more attentions. Compared with a traditional MIS, the robot-assisted system for MIS is able…

Abstract

Purpose

Robot-assisted system for minimally invasive surgery (MIS) has been attracting more and more attentions. Compared with a traditional MIS, the robot-assisted system for MIS is able to overcome or reduce defects, such as poor hand-eye coordination, heavy labour intensity and limited motion of the instrument. The purpose of this paper is to design a novel robotic system for MIS applications.

Design/methodology/approach

A robotic system with three separate slave arms for MIS has been designed. In the proposed robot, a new mechanism was designed as the remote centre motion (RCM) mechanism to restrain the movement of instrument or laparoscope around the incision. Moreover, an improved instrument without coupling motion between wrist and grippers was developed to enhance its manipulability. A control system architecture was also developed, and an intuitive control method was applied to realize hand-eye coordination of the operator.

Findings

For the RCM mechanism, the workspace was analyzed and the positioning accuracy of the remote centre point was tested. The results show that the RCM mechanism can be applied to MIS. Furthermore, the master-slave trajectory tracking experiments reveal that slave robots are able to follow the movement of the master manipulators well. Finally, the feasibility of the robot-assisted system for MIS is proved by performing animal experiments successfully.

Originality/value

This paper offers a novel robotic system for MIS. It can accomplish the anticipated results.

Details

Industrial Robot: An International Journal, vol. 44 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 2004

Tobias Ortmaier, Holger Weiss and Volkmar Falk

Minimally invasive endoscopic surgery and minimally invasive surgery challenge surgical skills due to the operator's separation from the surgical field and the requirements for…

1118

Abstract

Minimally invasive endoscopic surgery and minimally invasive surgery challenge surgical skills due to the operator's separation from the surgical field and the requirements for long instruments with limited dexterity. To overcome the drawbacks of conventional endoscopic instruments computer‐enhanced telemanipulation systems and robotic systems have been developed in the past. This paper summarizes the requirements for minimally invasive robotic assisted surgery and describes a new robot that has been developed at the German Aerospace Center (DLR). The discussion includes a description of the robotic arm, the appropriate control laws, as well as the requirements for actuated and sensorized instruments.

Details

Industrial Robot: An International Journal, vol. 31 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 January 1984

The RHyMAS® In‐Line Robotic Hybrid Microelectronic Assembly System is a high volume, high speed component placement and verification system. It is capable of automatically loading…

Abstract

The RHyMAS® In‐Line Robotic Hybrid Microelectronic Assembly System is a high volume, high speed component placement and verification system. It is capable of automatically loading substrates from feed mechanisms onto a transfer mechanism, precisely positioning a wide variety of components onto the substrates, and automatically unloading populated substrates to follow‐on operations.

Details

Microelectronics International, vol. 1 no. 4
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 December 2003

Francesco Cepolina and Rinaldo C. Michelini

The paper describes co‐robotic devices, aiming at accomplishing surgical operations by remote overseeing and manipulation. The concept design of a modular layout is presented…

1290

Abstract

The paper describes co‐robotic devices, aiming at accomplishing surgical operations by remote overseeing and manipulation. The concept design of a modular layout is presented, assuring body penetration by curved and twisted paths, with minimal impact. The fixture develops as an articulated snake‐like forearm, carrying a wrist and the pertinent effectors; scalpels, scissors, sewing rigs, cameras, etc. The fixture is a good example of a micro electro mechanical system, with force‐actuation and shape‐control being intrinsic properties. Different options are studied and the related basic operational characteristics are summarised and compared. The jointed forearm might include one to six blocks. Specifically, task‐oriented end‐effectors are considered, e.g. a self‐operating sewing rig, able to operate with a single thread. The robot co‐operation will drastically modify surgery practice, giving freedom from anthropocentric bounds; the paper introduces such opportunities, with comments on typical control strategies and hints on actual performance, inferred by testing on virtual reality and digital mock‐ups.

Details

Industrial Robot: An International Journal, vol. 30 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 June 2008

Rinaldo Michelini and Roberto Razzoli

The purpose of this paper is to consider surgical robotics, with a focus on technology and design issues for remote‐mode operation assistance. The investigation leads to the…

Abstract

Purpose

The purpose of this paper is to consider surgical robotics, with a focus on technology and design issues for remote‐mode operation assistance. The investigation leads to the definition of the technical characteristics of a co‐robotic positioning device (CRPD), to be developed in support of a split‐duty approach to planning. The expected characteristics and advantages are outlined, including the operation potential of special‐purpose devices (e.g. an automatic changer for surgical tools) and of scope‐driven enhancers (e.g. the exploration of the intervention theatre).

Design/methodology/approach

The paper addresses example developments based on projects performed with the co‐operation of other robot laboratories in Munich and Paris. The CRPD concept is applied in relation to the DLR KineMedic® arm (developed by the Munich laboratory), and with the LRP prototype mini‐arm (built by the Paris laboratory).

Findings

Minimally‐invasive surgery deserves increasing attention to reduce post‐operative hospital stays and to reduce complications. This leads to new trends in robotics, to facilitate safe, fast and accurate remote manipulation, and integrated computer‐aided implements. The features of the example CRPD design are summarised for the two cases.

Practical implications

The overall comments consider minimally‐invasive robotic surgery as a given intervention practice in the near future, and the split‐duty approach, supported by the CRPD technology, as a valuable aid for human‐robot co‐operation, according to the “best‐of‐skills” idea, supporting intervention under the surgeon's control.

Originality/value

This investigation shows new results aimed at expanding the operation versatility of robotics with integrated intelligence, to enhance scope‐driven alternatives and out‐of‐reach handling with improved dexterity and safe autonomic processing.

Details

Industrial Robot: An International Journal, vol. 35 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 June 2008

U. Hagn, M. Nickl, S. Jörg, G. Passig, T. Bahls, A. Nothhelfer, F. Hacker, L. Le‐Tien, A. Albu‐Schäffer, R. Konietschke, M. Grebenstein, R. Warpup, R. Haslinger, M. Frommberger and G. Hirzinger

Surgical robotics can be divided into two groups: specialized and versatile systems. Versatile systems can be used in different surgical applications, control architectures and…

4897

Abstract

Purpose

Surgical robotics can be divided into two groups: specialized and versatile systems. Versatile systems can be used in different surgical applications, control architectures and operating room set‐ups, but often still based on the adaptation of industrial robots. Space consumption, safety and adequacy of industrial robots in the unstructured and crowded environment of an operating room and in close human robot interaction are at least questionable. The purpose of this paper is to describe the DLR MIRO, a new versatile lightweight robot for surgical applications.

Design/methodology/approach

The design approach of the DLR MIRO robot focuses on compact, slim and lightweight design to assist the surgeon directly at the operating table without interference. Significantly reduced accelerated masses (total weight 10 kg) enhance the safety of the system during close interaction with patient and user. Additionally, MIRO integrates torque‐sensing capabilities to enable close interaction with human beings in unstructured environments.

Findings

A payload of 30 N, optimized kinematics and workspace for surgery enable a broad range of possible applications. Offering position, torque and impedance control on Cartesian and joint level, the robot can be integrated easily into telepresence (e.g. endoscopic surgery), autonomous or soft robotics applications, with one or multiple arms.

Originality/value

This paper considers lightweight and compact design as important design issues in robotic assistance systems for surgery.

Details

Industrial Robot: An International Journal, vol. 35 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 April 2001

Jack Hollingum

A day conference at the Institution of Mechanical Engineers on 14 November 2000 brought together engineers engaged in development of robotic aids, and surgeons, some of whom are…

Abstract

A day conference at the Institution of Mechanical Engineers on 14 November 2000 brought together engineers engaged in development of robotic aids, and surgeons, some of whom are currently using robotic assistance in their work. The meeting provided a valuable opportunity for sharing of experience. Chairman of the event was Dr Patrick Finlay, who, as founder of Armstrong Healthcare, has been a pioneer in the development of medical robotics. Dr Finlay himself spoke about the Pathfinder image‐guided robot for neurosurgery. The aim of this is to free the surgeon and patient from the rigid stereotactic frame which has been necessary to secure the required 1mm precision of positioning for a tool tip. Mr Rory McCloy described his use of robots in laparoscopic surgery. A delicate drilling operation on flexible bone tissue in the ear was described by Professor Peter Brett, and among other presentations were three relating to 3D image capture for surgery.

Details

Industrial Robot: An International Journal, vol. 28 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 1988

C.T. Irwin

FLEXIBILITY has always been associated with robotic systems. However, once a robot has been integrated into an application, the robot is no longer flexible but becomes a part of…

Abstract

FLEXIBILITY has always been associated with robotic systems. However, once a robot has been integrated into an application, the robot is no longer flexible but becomes a part of the tooling. This loss of flexibility is attributed to the use of rigid, costly tooling, which includes end effector tooling.

Details

Assembly Automation, vol. 8 no. 2
Type: Research Article
ISSN: 0144-5154

Article
Publication date: 13 July 2021

Robert Bogue

This paper aims to illustrate the growing importance of surgical robots by providing a short historical background and details of a selection of today’s products and their…

324

Abstract

Purpose

This paper aims to illustrate the growing importance of surgical robots by providing a short historical background and details of a selection of today’s products and their applications.

Design/methodology/approach

Following a short introduction, this first provides an historical perspective. It then discusses systems used in minimally invasive surgery (MIS). This is followed by examples of products aimed at other surgical applications and, finally, brief concluding comments are drawn.

Findings

The concept of robotic surgery arose in the 1960s and trials commenced in the 1980s. The business is now in a highly dynamic phase with numerous recent product launches and a growing number late-stage developments. MIS systems are attracting much interest but robotic technology is also being applied to many additional surgical procedures.

Originality/value

This provides an insight into the emergence and commercialisation of robotic surgical systems.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 678