Search results

1 – 10 of 18
Open Access
Article
Publication date: 16 October 2017

Xiang T.R. Kong, Ray Y. Zhong, Gangyan Xu and George Q. Huang

The purpose of this paper is to propose a concept of cloud auction robot (CAR) and its execution platform for transforming perishable food supply chain management. A new paradigm…

3302

Abstract

Purpose

The purpose of this paper is to propose a concept of cloud auction robot (CAR) and its execution platform for transforming perishable food supply chain management. A new paradigm of goods-to-person auction execution model is proposed based on CARs. This paradigm can shift the management of traditional manual working to automated execution with great space and time saving. A scalable CAR-enabled execution system (CARES) is presented to manage logistics workflows, tasks and behavior of CAR-Agents in handling the real-time events and associated data.

Design/methodology/approach

An Internet of Things enabled auction environment is designed. The robot is used to pick up and deliver the auction products and commends are given to the robot in real-time. CARES architecture is proposed while integrating three core services from auction workflow management, auction task management, to auction execution control. A system prototype was developed to show its execution through physical emulations and experiments.

Findings

The CARES could well schedule the tasks for each robot to minimize their waiting time. The total execution time is reduced by 33 percent on average. Space utilization for each auction studio is improved by about 50 percent per day.

Originality/value

The CAR-enabled execution model and system is simulated and verified in a ubiquitous auction environment so as to upgrade the perishable food supply chain management into a new level which is automated and real-time. The proposed system is flexible to cope with different auction scenarios, such as different auction mechanisms and processes, with high reconfigurability and scalability.

Details

Industrial Management & Data Systems, vol. 117 no. 9
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 2 February 2023

Cheng Wang, Haibo Xie and Huayong Yang

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor…

Abstract

Purpose

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor path-following accuracy for the path planning of hyper-redundant snake-like manipulator.

Design/methodology/approach

When a desired path is given, new configuration of the snake-like manipulator is obtained through a geometrical approach, then the joints are repositioned through iterations until all the rotation angles satisfy the imposed joint limits. Finally, a new arrangement is obtained through the analytic solution of the inverse kinematics of hyper-redundant manipulator. Finally, simulations and experiments are carried out to analyze the performance of the proposed path-following method.

Findings

Simulation results show that the average computation time is 0.1 ms per step for a hyper-redundant manipulator with 12 degrees of freedom, and the deviation in tip position can be kept below 0.02 mm. Experiments show that all the rotation angles are within joint limits.

Research limitations/implications

Currently , the manipulator is working in open-loop, the elasticity of the driving cable will cause positioning error. In future, close-loop control based on real-time attitude detection will be used in in combination with the path-following method to achieve high-precision trajectory tracking.

Originality/value

Through a series of iterative processes, the proposed method can make the manipulator approach the desired path as much as possible within the joint constraints with high precision and less computation time.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 12 March 2020

Marius Siegfarth, Tim Philipp Pusch, Antoine Pfeil, Pierre Renaud and Jan Stallkamp

This study aims to investigate the potential of using polymer multi-material additive manufacturing (MMAM) to produce miniature hydraulic piston actuators combining rigid…

2003

Abstract

Purpose

This study aims to investigate the potential of using polymer multi-material additive manufacturing (MMAM) to produce miniature hydraulic piston actuators combining rigid structures and flexible seals. Such actuators offer great potential for medical robots in X-ray and magnetic resonance environments, where conventional piston actuators cannot be used because of safety issues caused by metal components.

Design/methodology/approach

Hydraulic pistons with two different integrated flexible seal shapes are designed and manufactured using MMAM. Design 1 features a ring-shaped seal made from a flexible material that is printed on the surface of the rigid piston shaft. Design 2 appears identical from the outside, yet an axial opening in the piston shaft is added to enable self-reinforced sealing as fluid pressure increases. For both designs, samples with three different outer diameters are fabricated leading to a total of six different piston versions. The pistons are then evaluated regarding leakage, friction and durability.

Findings

Measurement results show that the friction force for Design 2 is lower than that of Design 1, making Design 2 more suitable for the intended application. None of the versions of Design 2 shows leakage for pressures up to 1.5 MPa. For Design 1, leak-tightness varies with the outer diameter, yet none of the versions is consistently leak-tight at 1.5 MPa. Furthermore, the results show that prolonged exposure to water decreases the durability of the flexible material significantly. The durability the authors observe may, however, be sufficient for short-term or single-use devices.

Originality/value

The authors investigate a novel design approach for hydraulic piston actuators based on MMAM. These actuators are of particular interest for patient-specific medical devices used in radiological interventions, where metal-free components are required to safely operate in X-ray and magnetic resonance environments. This study may serve as a basis for the development of new actuators, as it shows a feasible solution, yet pointing out critical aspects such as the influence of small geometry changes or material performance changes caused by water absorption.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 7 August 2017

Chunlin Zhou, Huifeng Wu, Xiang Xu, Yong Liu, Qi Zhu and Shuwen Pan

The purpose of this paper is to propose a robotic system for percutaneous surgery. The key component in the system, a robotic arm that can manipulate a puncture needle is…

4043

Abstract

Purpose

The purpose of this paper is to propose a robotic system for percutaneous surgery. The key component in the system, a robotic arm that can manipulate a puncture needle is presented. The mechanical design, the motion control and the force control method of the robotic arm are discussed in the paper.

Design/methodology/approach

The arm with an arc mechanism placed on a 3D Cartesian stage is developed as a puncture needle manipulator to locate the position of the needle tip, tune the needle’s posture and actuate the puncture motion under the visual guidance of two orthogonal X-ray images of a patient by a surgeon. A focusing method by using two laser spots is proposed to automatically move the needle tip to a surgery entry point on the skin. A dynamics model is developed to control the position of the needle mechanism and an explicit force control strategy is utilized to perform the needle insertion.

Findings

With the surgical system, a surgeon can easily perform puncture operation by taking two orthogonal real-time X-ray images as a visual feedback and accurately navigating the needle insertion. The laser-guided focusing method is efficient in placement of the needle tip. The explicit force control strategy is proved to be effective for holding constant and stable puncture force in experiments.

Originality/value

The robotic arm has an advantage in easy redirection of the needle because the rotation and the translation are decoupled in the mechanism. By adopting simple laser pens and a well-developed kinematics model, the system can handle the entry point, locating task automatically. The focusing method and the force control method proposed in the paper are useful for the present system and could be intuitive for similar surgical robots.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 22 July 2021

David Dapice

The purpose of this paper is to explain why Vietnam has been charged as a currency manipulator by the USA, and why those charges are less than conclusive, as of May 2021, no…

8357

Abstract

Purpose

The purpose of this paper is to explain why Vietnam has been charged as a currency manipulator by the USA, and why those charges are less than conclusive, as of May 2021, no immediate tariffs were imposed.

Design/methodology/approach

A comparative approach is applied using economic data on trade balances, inflation, exchange rates, and foreign exchange reserves from Vietnam, other Asian nations, and the USA. Currency regime theories are briefly reviewed, and USA. Treasury statements about Vietnam’s currency are referred to, which then are analyzed. Further explanations are based on the context of the economic situation and bilateral relations.

Findings

Since 2010, Vietnam’s currency has appreciated, and since 2015, the government has kept the Vietnamese dong (VND) stable in real terms against the dollar. The sharp improvement in Vietnam’s bilateral and overall trade balance is due largely to rising labor costs in China and trade frictions between the USA and China. The resulting US tariffs on China’s exports redirected Foreign Direct Investment (FDI) exports to Vietnam. Even with these recent trade surpluses, Vietnam’s ratio of foreign exchange reserves to imports is lower than that of many other Asian nations. The USA’s recent decision not to impose punitive tariffs on Vietnam’s exports but continue to monitor and hold discussions reflects the reduced priority the new US administration puts on bilateral trade balances and the recognition that Vietnam is negotiating seriously and has significant value in a regional context.

Originality/value

The paper provides a comprehensive understanding from both theoretical and practical perspectives of the recent event. The implications are meaningful for the adjustment of national monetary strategy to avoid a similar situation in the future.

Details

Fulbright Review of Economics and Policy, vol. 1 no. 1
Type: Research Article
ISSN: 2635-0173

Keywords

Open Access
Article
Publication date: 4 December 2020

Fangli Mou and Dan Wu

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further…

1146

Abstract

Purpose

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further applications and human–robot interaction in an unstructured open environment, fast and accurate tracking and strong disturbance rejection ability are required. However, utilizing a conventional controller can make it difficult for the robot to meet these demands, and when a robot is required to perform at a high-speed and large range of motion, conventional controllers may not perform effectively or even lead to the instability.

Design/methodology/approach

The main idea is to develop the control law by combining the SMC feedback with the ADRC control architecture to improve the robustness and control quality of a conventional SMC controller. The problem is formulated and solved in the framework of ADRC. For better estimation and control performance, a generalized proportional integral observer (GPIO) technique is employed to estimate and compensate for unmodeled dynamics and other unknown time-varying disturbances. And benefiting from the usage of GPIO, a new SMC law can be designed by synthesizing the estimation and its history.

Findings

The employed methodology introduced a significant improvement in handling the uncertainties of the system parameters without compromising the nominal system control quality and intuitiveness of the conventional ADRC design. First, the proposed method combines the advantages of the ADRC and SMC method, which achieved the best tracking performance among these controllers. Second, the proposed controller is sufficiently robust to various disturbances and results in smaller tracking errors. Third, the proposed control method is insensitive to control parameters which indicates a good application potential.

Originality/value

High-performance robot tracking control is the basis for further robot applications in open environments and human–robot interfaces, which require high tracking accuracy and strong disturbance rejection. However, both the varied dynamics of the system and rapidly changing nonlinear coupling characteristic significantly increase the control difficulty. The proposed method gives a new replacement of PID controller in robot systems, which does not require an accurate dynamic system model, is insensitive to control parameters and can perform promisingly for response rapidity and steady-state accuracy, as well as in the presence of strong unknown disturbances.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 31 July 2019

Yitao Pan, Yuan Chen and Lin Li

The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s…

1170

Abstract

Purpose

The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s athletic ability, load capacity and rigidity, and to ensure the coordination of multi-modal motion.

Design/methodology/approach

First, based on the rotation transformation matrix and closed-loop constraint equation of the parallel trunk joint mechanism, the mathematical model of its inverse position solution is constructed. Then, the Jacobian matrix of velocity and acceleration is derived by time derivative method. On this basis, the stiffness matrix of the parallel trunk joint mechanism is derived on the basis of the principle of virtual work and combined with the deformation effect of the rope driving pair and the spring elastic restraint pair. Then, the eigenvalue distribution of the stiffness matrix and the global stiffness performance index are used as the stiffness evaluation index of the mechanism. In addition, the performance index of athletic dexterity is analyzed. Finally, the distribution map of kinematic dexterity and stiffness is drawn in the workspace by numerical simulation, and the influence of the introduced spring on the stiffness distribution of the parallel trunk joint mechanism is compared and analyzed. It is concluded that the stiffness in the specific direction of the parallel trunk joint mechanism can be improved, and the stiffness distribution can be improved by adjusting the spring elastic structure parameters of the rope-driven branch chain.

Findings

Studies have shown that the wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring has a great kinematic dexterity, load-carrying capacity and stiffness performance.

Research limitations/implications

The soft-mixed structure is not mature, and there are few new materials for the soft-mixed mixture; the rope and the rigid structure are driven together with a large amount of friction and hindrance factors, etc.

Practical implications

It ensures that the multi-motion mode hexapod mobile robot can meet the requirement of sufficient different stiffness for different motion postures through the parallel trunk joint mechanism, and it ensures that the multi-motion mode hexapod mobile robot in multi-motion mode can meet the performance requirement of global stiffness change at different pose points of different motion postures through the parallel trunk joint mechanism.

Social implications

The trunk structure is a very critical mechanism for animals. Animals in the movement to achieve smooth climbing, overturning and other different postures, such as centipede, starfish, giant salamander and other multi-legged animals, not only rely on the unique leg mechanism, but also must have a unique trunk joint mechanism. Based on the cooperation of these two mechanisms, the animal can achieve a stable, flexible and flexible variety of motion characteristics. Therefore, the trunk joint mechanism has an important significance for the coordinated movement of the whole body of the multi-sport mode mobile robot (Huang Hu-lin, 2016).

Originality/value

In this paper, based on the idea of combining rigid parallel mechanism with wire-driven mechanism, a trunk mechanism is designed, which is composed of four spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism in series. Its spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism can make the multi-motion mode mobile robot have better load capacity, mobility and stiffness performance (Qi-zhi et al., 2018; Cong-hao et al., 2018), thus improving the environmental adaptability and reliability of the multi-motion mode mobile robot.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 1 May 2018

N.M. Fonseca Ferreira, André Araujo, M.S. Couceiro and David Portugal

This paper describes a two-month summer intensive course designed to introduce participants with a hands-on technical craft on robotics and to acquire experience in the low-level…

Abstract

This paper describes a two-month summer intensive course designed to introduce participants with a hands-on technical craft on robotics and to acquire experience in the low-level details of embedded systems. Attendants started this course with a brief introduction to robotics; learned to draw, design and create a personalized 3D structure for their mobile robotic platform and developed skills in embedded systems. They were familiarize with the practices used in robotics, learning to connect all sensors and actuator, developing a typical application on differential kinematic using Arduino, exploring ROS features under Raspberry Pi environment and Arduino – Raspberry Pi communication. Different paradigms and some real applications and programming were addressed on the topic of Artificial Intelligence. Throughout the course, participants were introduced to programming languages (including Python and C++), advanced programming concepts such as ROS, basic API development, system concepts such as I2C and UART serial interfaces, PWM motor control and sensor fusion to improve robotic navigation and localization. This paper describes not just the concept, layout and methodology used on RobotCraft 2017 but also presents the participants knowledge background and their overall opinions, leading to focus on lessons learned and suggestions for future editions.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 18