Search results

1 – 10 of over 9000
Article
Publication date: 17 January 2020

Parviz Fattahi, Naeeme Bagheri Rad, Fatemeh Daneshamooz and Samad Ahmadi

The purpose of this paper is to present a mathematical model and a new hybrid algorithm for flexible job shop scheduling problem with assembly operations. In this problem, each…

Abstract

Purpose

The purpose of this paper is to present a mathematical model and a new hybrid algorithm for flexible job shop scheduling problem with assembly operations. In this problem, each product is produced by assembling a set of several different parts. At first, the parts are processed in a flexible job shop system, and then at the second stage, the parts are assembled and products are produced.

Design/methodology/approach

As the problem is non-deterministic polynomial-time-hard, a new hybrid particle swarm optimization and parallel variable neighborhood search (HPSOPVNS) algorithm is proposed. In this hybrid algorithm, particle swarm optimization (PSO) algorithm is used for global exploration of search space and parallel variable neighborhood search (PVNS) algorithm for local search at vicinity of solutions obtained in each iteration. For parameter tuning of the metaheuristic algorithms, Taguchi approach is used. Also, a statistical test is proposed to compare the ability of metaheuristics at finding the best solution in the medium and large sizes.

Findings

Numerical experiments are used to evaluate and validate the performance and effectiveness of HPSOPVNS algorithm with hybrid particle swarm optimization with a variable neighborhood search (HPSOVNS) algorithm, PSO algorithm and hybrid genetic algorithm and Tabu search (HGATS). The computational results show that the HPSOPVNS algorithm achieves better performance than competing algorithms.

Practical implications

Scheduling of manufacturing parts and planning of assembly operations are two steps in production systems that have been studied independently. However, with regard to many manufacturing industries having assembly lines after manufacturing stage, it is necessary to deal with a combination of these problems that is considered in this paper.

Originality/value

This paper proposed a mathematical model and a new hybrid algorithm for flexible job shop scheduling problem with assembly operations.

Article
Publication date: 4 December 2020

Yuquan Wang and Naiming Xie

purpose of this paper is providing a solution for flexible flow shop scheduling problem with uncertain processing time in aeronautical composite lay-up workshop.

Abstract

Purpose

purpose of this paper is providing a solution for flexible flow shop scheduling problem with uncertain processing time in aeronautical composite lay-up workshop.

Design/methodology/approach

A flexible flow scheduling model and algorithm with interval grey processing time is established. First, according to actual needs of composite laminate shop scheduling process, interval grey number is used to represent uncertain processing time, and interval grey processing time measurement method, grey number calculation and comparison rules, grey Gantt chart, and other methods are further applied. Then a flexible flow shop scheduling model with interval grey processing time (G-FFSP) is established, and an artificial bee colony algorithm based on an adaptive neighbourhood search strategy is designed to solve the model. Finally, six examples are generated for simulation scheduling, and the efficiency and performance of the model and algorithm are evaluated by comparing the results.

Findings

Results show that flexible flow shop scheduling model and algorithm with interval grey processing time can provide an optimal solution for composite lay-up shop scheduling problems and other similar flow shop scheduling problems.

Social implications

Uncertain processing time is common in flexible workshop manufacturing, and manual scheduling greatly restricts the production efficiency of workshop. In this paper, combined with grey system theory, an intelligent algorithm is used to solve flexible flow shop scheduling problem to promote intelligent and efficient production of enterprises.

Originality/value

This paper applies and perfects interval grey processing time measurement method, grey number calculation and comparison rules, grey Gantt chart and other methods. A flexible flow shop scheduling model with interval grey processing time is established, and an artificial bee colony algorithm with an adaptive domain search strategy is designed. It provides a comprehensive solution for flexible flow shop scheduling with uncertain processing time.

Details

Grey Systems: Theory and Application, vol. 11 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 26 October 2012

Rajeev Agrawal, L.N. Pattanaik and S. Kumar

The purpose of this paper is to solve a flexible job shop scheduling problem where alternate machines are available to process the same job. The study considers the Flexible Job

Abstract

Purpose

The purpose of this paper is to solve a flexible job shop scheduling problem where alternate machines are available to process the same job. The study considers the Flexible Job Shop Problem (FJSP) having n jobs and more than three machines for scheduling.

Design/methodology/approach

FJSP for n jobs and more than three machines is non polynomial (NP) hard in nature and hence a multi‐objective genetic algorithm (GA) based approach is presented for solving the scheduling problem. The two objective functions formulated are minimizations of the make‐span time and total machining time. The algorithm uses a unique method of generating initial populations and application of genetic operators.

Findings

The application of GA to the multi‐objective scheduling problem has given optimum solutions for allocation of jobs to the machines to achieve nearly equal utilisation of machine resources. Further, the make span as well as total machining time is also minimized.

Research limitations/implications

The model can be extended to include more machines and constraints such as machine breakdown, inspection etc., to make it more realistic.

Originality/value

The paper presents a successful implementation of a meta‐heuristic approach to solve a NP‐hard problem of FJSP scheduling and can be useful to researchers and practitioners in the domain of production planning.

Article
Publication date: 8 February 2008

Adil Baykasoğlu and Lale Özbakır

In today's very competitive, dynamic and unpredictable manufacturing environments it is critical to improve manufacturing performance in order to be able to compete…

1541

Abstract

Purpose

In today's very competitive, dynamic and unpredictable manufacturing environments it is critical to improve manufacturing performance in order to be able to compete. Responsiveness and agility become important characteristics of manufacturing systems and organizations. Manufacturing systems must be designed optimally by taking into account responsiveness and agility related measures in order to improve effectiveness and performance. One of the important enablers of performance improvement is flexibility. It is a known fact that flexibility has a positive effect on the manufacturing system performance if it is properly utilized by the control system (usually scheduling). However, the relationship between flexibility and manufacturing system performance through scheduling is not entirely explored in the previous literature. The purpose of this paper is to investigate the effects of process plan and machine flexibilities on the scheduling performance of manufacturing jobshops.

Design/methodology/approach

Effects of process plan and machine flexibilities on the scheduling performance of manufacturing jobshops are analyzed at different flexibility levels by using the grammar‐based flexible job shop scheduling system that is developed by Baykasoğlu et al.. Three different flexibility levels are defined for process plans and machines. Four different problem sizes are evaluated according to “makespan” “machine load balance” and “mean waiting times of jobs”. Performance differences among “process plan” and “machine flexibility” levels are determined and statistically analyzed through Taguchi experimental design methodology.

Findings

It is found out after detailed analysis that the effect of machine flexibility on job shop performance is higher than the process plan flexibility. It is also figured out that after a certain level of machine flexibility, the speed of scheduling performance improvement decreases considerably.

Originality/value

The paper presents the interaction between flexibility and scheduling performance of manufacturing jobshops. The findings should be taken into account while designing scheduling systems for job shops that have flexible processing capabilities.

Details

Journal of Manufacturing Technology Management, vol. 19 no. 2
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 6 March 2017

Pravin S. Pachpor, R.L. Shrivastava, Dinesh Seth and Shaligram Pokharel

The purpose of this paper is to demonstrate the use of Petri nets in a job shop setup for the improvement in the utilization of machines.

Abstract

Purpose

The purpose of this paper is to demonstrate the use of Petri nets in a job shop setup for the improvement in the utilization of machines.

Design/methodology/approach

The study discusses concepts such as reachable state, token and matrix equations set, and demonstrates the improvements in machines’ utilization in a job shop. It makes use of algorithms to generate reachable markings to obtain utilization. The study not only describes the application of theory, but also extends the body of knowledge on Petri nets and job shops.

Findings

In this study, machines’ utilization has been studied in a job shop with six machines and eight products. The study finds that substantial utilization improvement in job shop set up can be obtained through the application of Petri nets. The study also exposes that Petri nets are mostly used for machines, jobs and tools scheduling problems, but its use in machines’ utilization is neglected. The framework and application presented here along with generalizable findings, is the first to report about machine utilization improvement in job shop manufacturing environment.

Practical implications

Job shops are characterized by high unit production cost, low investments, low volume and high variety, complex flows, flexible and skilled work force, general purpose machines, high material handling; resulting in poor utilization of machines. Therefore, the findings of this study can help in reducing such costs through better machine utilization. This can help in increasing the competitiveness of the companies.

Originality/value

The contribution of study lies in investigating and improving stage wise utilization in a job shop setup. It has never been reported before.

Details

Journal of Manufacturing Technology Management, vol. 28 no. 2
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 15 May 2019

Xiabao Huang and Lixi Yang

Flexible job-shop scheduling is significant for different manufacturing industries nowadays. Moreover, consideration of transportation time during scheduling makes it more…

1063

Abstract

Purpose

Flexible job-shop scheduling is significant for different manufacturing industries nowadays. Moreover, consideration of transportation time during scheduling makes it more practical and useful. The purpose of this paper is to investigate multi-objective flexible job-shop scheduling problem (MOFJSP) considering transportation time.

Design/methodology/approach

A hybrid genetic algorithm (GA) approach is integrated with simulated annealing to solve the MOFJSP considering transportation time, and an external elitism memory library is employed as a knowledge library to direct GA search into the region of better performance.

Findings

The performance of the proposed algorithm is tested on different MOFJSP taken from literature. Experimental results show that proposed algorithm performs better than the original GA in terms of quality of solution and distribution of the solution, especially when the number of jobs and the flexibility of the machine increase.

Originality/value

Most of existing studies have not considered the transportation time during scheduling of jobs. The transportation time is significantly desired to be included in the FJSP when the time of transportation of jobs has significant impact on the completion time of jobs. Meanwhile, GA is one of primary algorithms extensively used to address MOFJSP in literature. However, to solve the MOFJSP, the original GA has a possibility to get a premature convergence and it has a slow convergence speed. To overcome these problems, a new hybrid GA is developed in this paper.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 June 2001

Kostas S. Metaxiotis, Kostas Ergazakis and John E. Psarras

It is common knowledge that during the last decade markets have become extremely competitive with product variety increasing continuously and product life cycles shortening. Many…

1343

Abstract

It is common knowledge that during the last decade markets have become extremely competitive with product variety increasing continuously and product life cycles shortening. Many manufacturing companies, which hitherto satisfied their customers while operating specific production systems, were recently obliged to reconsider because of the potential superiority of other “manufacturing philosophies”. In the literature, we meet a great variety of production systems and manufacturing philosophies, while, on the other side, in industry we usually find different combinations of “primary” productions systems. In this paper, we present the existing “state‐of‐the‐art” theoretical and experiential knowledge about productions systems, as well as describe their basic characteristics in a useful, exact and comprehensive way for practitioners and software houses who want to have a knowledge base for further research and practical implementation in the wider field of production management, planning and scheduling.

Details

Industrial Management & Data Systems, vol. 101 no. 4
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 23 March 2012

Hamid Reza Golmakani and Ali Namazi

In many manufacturing systems, machines are subject to preventive maintenance. This paper aims to schedule the operations of jobs and preventive maintenance tasks in such a way…

Abstract

Purpose

In many manufacturing systems, machines are subject to preventive maintenance. This paper aims to schedule the operations of jobs and preventive maintenance tasks in such a way that the completion time of jobs and preventive maintenance tasks is minimized.

Design/methodology/approach

An heuristic approach based on artificial immune algorithm is proposed for solving the multiple‐route job shop‐scheduling problem subject to fixed periodic and age‐dependent preventive maintenance tasks. Under fixed periodic assumption, the time between two consecutive preventive maintenance tasks is assumed constant. Under age‐dependent assumption, a preventive maintenance task is triggered if the machine operates for a certain amount of time. The goal is to schedule the jobs and preventive maintenance task subject to makespan minimization.

Findings

In addition to presenting mathematical formulation for the multiple‐route job shop‐scheduling problem, this paper proposes a novel approach by which one can tackle the complexity that is raised in scheduling and sequencing the jobs and the preventive maintenance simultaneously and obtain the required schedule in reasonable time.

Practical implications

Integrating preventive maintenance tasks into the scheduling procedure is vital in many manufacturing systems. Using the proposed approach, one can obtain a schedule that defines the production route through which each part is processed, the time each operation must be started, and when preventive maintenance must be carried out on each machine. This, in turn, results in overall manufacturing cost reduction.

Originality/value

Using the approach proposed in this paper, good solutions, if not optimal, can be obtained for scheduling jobs and preventive maintenance task in one of the most complicated job shop configurations, namely, multiple‐route job shop. Thus, the approach can dominate all other simpler configurations.

Details

Journal of Quality in Maintenance Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 17 January 2020

Yi Zhang, Haihua Zhu and Dunbing Tang

With the continuous upgrading of the production mode of the manufacturing system, the characteristics of multi-variety, small batch and mixed fluidization are presented, and the…

Abstract

Purpose

With the continuous upgrading of the production mode of the manufacturing system, the characteristics of multi-variety, small batch and mixed fluidization are presented, and the production environment becomes more and more complex. To improve the efficiency of solving multi-objective flexible job shop scheduling problem (FJSP), an improved hybrid particle swarm optimization algorithm (IH-PSO) is proposed.

Design/methodology/approach

After reviewing literatures on FJSP, an IH-PSO algorithm for solving FJSP is developed. First, IH-PSO algorithm draws on the crossover and mutation operations of genetic algorithm (GA) algorithm and proposes a new method for updating particles, which makes the offspring particles inherit the superior characteristics of the parent particles. Second, based on the improved simulated annealing (SA) algorithm, the method of updating the individual best particles expands the search scope of the domain and solves the problem of being easily trapped in local optimum. Finally, analytic hierarchy process (AHP) is used in this paper to solve the optimal solution satisfying multi-objective optimization.

Findings

Through the benchmark experiment and the production example experiment, it is verified that the proposed algorithm has the advantages of high quality of solution and fast speed of convergence.

Research limitations/implications

This method does not consider the unforeseen events that occur during the process of scheduling and cause the disruption of normal production scheduling activities, such as machine breakdown.

Practical implications

IH-PSO algorithm combines PSO algorithm with GA and SA algorithms. This algorithm retains the advantage of fast convergence speed of traditional PSO algorithm and has the characteristic of inheriting excellent genes. In addition, the improved SA algorithm is used to solve the problem of falling into local optimum.

Social implications

This research provides an efficient scheduling method for solving the FJSP problem.

Originality/value

This research proposes an IH-PSO algorithm to solve the FJSP more efficiently and meet the needs of multi-objective optimization.

Details

Kybernetes, vol. 49 no. 12
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 23 August 2019

Sahar Tadayonirad, Hany Seidgar, Hamed Fazlollahtabar and Rasoul Shafaei

In real manufacturing systems, schedules are often disrupted with uncertainty factors such as random machine breakdown, random process time, random job arrivals or job

Abstract

Purpose

In real manufacturing systems, schedules are often disrupted with uncertainty factors such as random machine breakdown, random process time, random job arrivals or job cancellations. This paper aims to investigate robust scheduling for a two-stage assembly flow shop scheduling with random machine breakdowns and considers two objectives makespan and robustness simultaneously.

Design/methodology/approach

Owing to its structural and algorithmic complexity, the authors proposed imperialist competitive algorithm (ICA), genetic algorithm (GA) and hybridized with simulation techniques for handling these complexities. For better efficiency of the proposed algorithms, the authors used artificial neural network (ANN) to predict the parameters of the proposed algorithms in uncertain condition. Also Taguchi method is applied for analyzing the effect of the parameters of the problem on each other and quality of solutions.

Findings

Finally, experimental study and analysis of variance (ANOVA) is done to investigate the effect of different proposed measures on the performance of the obtained results. ANOVA's results indicate the job and weight of makespan factors have a significant impact on the robustness of the proposed meta-heuristics algorithms. Also, it is obvious that the most effective parameter on the robustness for GA and ICA is job.

Originality/value

Robustness is calculated by the expected value of the relative difference between the deterministic and actual makespan.

1 – 10 of over 9000