Search results

1 – 10 of over 23000
Article
Publication date: 28 February 2019

Prabhakar Sathujoda, Paul Arnell and Andrew Deans

As fire doors are passive fire protection parts, the doors have to be certified through standard fire tests. It is usual practice to perform the standard fire testing on the…

Abstract

Purpose

As fire doors are passive fire protection parts, the doors have to be certified through standard fire tests. It is usual practice to perform the standard fire testing on the components which require the fire certification. However, some gas turbine enclosure doors are too large to test at the test facility and hence the fire resistance test is practically not possible. The purpose of this paper is to develop a reliable finite element model, validate the model using the specimen door test results and extend the method to actual gas turbine enclosure doors to support the fire certification.

Design/methodology/approach

First, the standard fire testing on enclosure door test specimen was carried out. Second, the finite element analysis model was built and tuned to match the standard fire test deflections, and finally, the same modelling technique was extended to model the actual gas turbine enclosure door to verify the results for fire certification process.

Findings

Gap analysis, a method of post processing is suggested for result analysis. It was found suitable to verify the gap openings which are required for A0 rated fire certification according to fire test procedure code and also to check the mechanical integrity of the enclosure door frame assembly.

Originality/value

The method presented in this work could be used as support information along with the test specimen results for A0 class fire rating certification of the doors according to International Maritime Organization Resolution MSC.307 (88) Annexure 1: Part 3.

Details

Journal of Structural Fire Engineering, vol. 10 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 May 2020

András Jakab, Viktor Hlavicka, Ágoston Restás and Eva Lubloy

During the building designing, it is very important to deal with the fire resistance of the structures. The designed materials for escape routes should be selected to ensure the…

Abstract

Purpose

During the building designing, it is very important to deal with the fire resistance of the structures. The designed materials for escape routes should be selected to ensure the usability of the structures until the time of escape. Planning affects the glass structures similarly, so these can also be partition walls and load bearing structures, although the latter is less applied on escape routes. The heat protection of the glasses can be improved with heat-protective foils, while fire protection is provided by gel intumescent material.

Design/methodology/approach

To research the topic of fire resistance, laboratory experiments were carried out on small-scaled glass elements with thermal protection foil at Budapest University of Technology and Economics at the Department of Construction Materials and Technologies.

Findings

Fire protection of small model specimens was tested with blowtorch fire and furnace heat load. During the experiments, six foils were tested. Single pane glass, double layered and triple glazed specimens were tested with blowtorch fire.

Originality/value

Fire protection of small model specimens was tested with blowtorch fire and furnace heat load. During the experiments, six foils were tested. Single pane glass, double layered and triple glazed specimens were tested with blowtorch fire. In case of heat-protected glazing, the foils on the “protected” side of the single pane glass do not have a fire protection effect based on blowtorch fire test. For double glassed specimens, the P35 foil has a perceptible effect, even for the requirements of the flame breakthrough (E, integrity), when the foil is placed on the inner side (position 3) of the second glass layer. The stratification of each triple glazed specimens was effective against blowtorch fire load (3 M, S4&P35), so (EI, integrity and isolation) it can meet the requirements of flame breakthrough and thermal insulation.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 March 2017

Venkatesh Kodur, James Stein, Rustin Fike and Mahmood Tabbador

This paper aims to present an evaluation of comparative fire resistance on traditional and engineered wood joists used in the construction of floor systems in residential housing.

Abstract

Purpose

This paper aims to present an evaluation of comparative fire resistance on traditional and engineered wood joists used in the construction of floor systems in residential housing.

Design/methodology/approach

Fire resistance experiments were carried out on four types of wood joists, namely, traditional lumber, engineered I-joist, castellated I-joist and steel/wood hybrid joist, used in traditional and modern residential construction. The test variables included type of wood joist, support conditions and fire protection (insulation).

Findings

Results from these tests indicate that webs of engineered I-joists and castellated I-joists are highly susceptible to fire, and failure generally occurs through the burn-out of the web. In addition, engineered I-joists have much lower fire resistance than traditional solid joist lumber. The application of an intumescent coating on an engineered I-joist significantly enhances its fire resistance and yields a similar level of fire resistance as that of a traditional lumber joist.

Originality/value

The presented fire tests are unique and provide valuable insight (and information) to the behavior and response of four types of wood joists when subjected to gravity loading and fire conditions.

Details

Journal of Structural Fire Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 July 2017

Kristian Hertz, Luisa Giuliani and Lars Schiøtt Sørensen

Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire

Abstract

Purpose

Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of load-bearing capacity of hollow-core slabs when exposed to fire.

Design/methodology/approach

Furthermore, it compares theoretical calculation and assessment according to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs.

Findings

Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found.

Originality value

For the first time, the mechanisms responsible for loss of load-bearing capacity are identified, and test results and calculation approach are for the first time applied in accordance with each other for assessment of fire resistance of the structure.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 December 2016

H. Kinjo, T. Hirashima, S. Yusa, T. Horio and T. Matsumoto

Based on heating tests and load-bearing fire tests, this paper aims to discuss the charring rate, the temperature distribution in the section and the load-bearing capacity of…

Abstract

Purpose

Based on heating tests and load-bearing fire tests, this paper aims to discuss the charring rate, the temperature distribution in the section and the load-bearing capacity of structural glued laminated timber beams not only during the heating phase during a 1-h standard fire in accordance with ISO 834-1 but also during the cooling phase.

Design/methodology/approach

Heating tests were carried out to confirm the charring rate and the temperature distribution in the cross-section of the beams. Loading tests under fire conditions were carried out to obtain the load-deformation behavior (i.e. the stiffness, maximum load and ductility) of the beam.

Findings

The temperature at the centroid reached approximately 30°C after 1 h and then increased gradually until reaching 110-200°C after 4 h, during the cooling phase. The maximum load of the specimen exposed to a 1-h standard fire was reduced to approximately 30 per cent of that of the specimen at ambient temperature. The maximum load of the specimen exposed to a 1-h standard fire and 3 h of natural cooling in the furnace was reduced to approximately 14 per cent. In case of taking into consideration of the strength reduction at elevated temperature, the reduction ratio of the calculated bending resistance agreed with that of the test results during not only heating phase but also cooling phase.

Originality/value

The results of this study state that it is possible to study on strength reduction in cooling phase for end of heating, timber structural which has not been clarified. It is believed that it is possible to appropriately evaluate the fire performance, including the cooling phase of the timber structural.

Details

Journal of Structural Fire Engineering, vol. 7 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 16 January 2024

Thomas Pinger, Mirabela Firan and Martin Mensinger

Based on the known positive effects of conventional hot-dip galvanizing under fire exposure and indicative results on zinc–aluminum coatings from smallscale tests, a series of…

15

Abstract

Purpose

Based on the known positive effects of conventional hot-dip galvanizing under fire exposure and indicative results on zinc–aluminum coatings from smallscale tests, a series of tests were conducted on zinc-5% aluminum galvanized test specimens under fire loads to verify the previous positive findings under largescale boundary conditions.

Design/methodology/approach

The emissivity of zinc-5% aluminum galvanized surfaces applied to steel specimens was determined experimentally under real fire loads and laboratory thermal loads in accordance with the normative specifications of the standard fire curve. Both large and smallscale specimens were used in this study. The steel grade and surface conditions of the specimens were varied for both test scenarios.

Findings

Largescale tests on specimens with typical steel construction dimensions under fire loads showed that the surface emissivity of zinc-5% aluminum galvanized steel was significantly lower than that of the conventionally galvanized steel. Only minor influences from the weathering of the specimens and steel chemistry were observed. These results agree well with those obtained from smallscale tests. The design values of zinc-5% aluminum melt (Zn5Al) required for the structural fire design were proposed based on the obtained results.

Originality/value

The novel tests presented in this study are the first ones to study the behavior of zinc-5% aluminum galvanized largescale steel construction components under the influence of real fire exposure and their positive effect on the emissivity of steel components galvanized by this method. The results provide valuable insights and information on the behavior in the case of fire and the associated savings potential for steel construction.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 October 2021

Lisa Choe, Selvarajah Ramesh, Xu Dai, Matthew Hoehler and Matthew Bundy

The purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building…

Abstract

Purpose

The purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building constructed at the National Fire Research Laboratory.

Design/methodology/approach

The fire experiment was aimed to quantify the fire resistance and behavior of full-scale steel–concrete composite floor systems commonly built in the USA. The test floor assembly, designed and constructed for the 2-h fire resistance rating, was tested to failure under a natural gas fueled compartment fire and simultaneously applied mechanical loads.

Findings

Although the protected steel beams and girders achieved matching or superior performance compared to the prescribed limits of temperatures and displacements used in standard fire testing, the composite slab developed a central breach approximately at a half of the specified rating period. A minimum area of the shrinkage reinforcement (60 mm2/m) currently permitted in the US construction practice may be insufficient to maintain structural integrity of a full-scale composite floor system under the 2-h standard fire exposure.

Originality/value

This work was the first-of-kind fire experiment conducted in the USA to study the full system-level structural performance of a composite floor system subjected to compartment fire using natural gas as fuel to mimic a standard fire environment.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 April 2021

Md Delwar Hossain, Md Kamrul Hassan, Anthony Chun Yin Yuen, Yaping He, Swapan Saha and Waseem Hittini

The purpose of this study is to review and summarise the existing available literature on lightweight cladding systems to provide detailed information on fire behaviour…

Abstract

Purpose

The purpose of this study is to review and summarise the existing available literature on lightweight cladding systems to provide detailed information on fire behaviour (ignitibility, heat release rate and smoke toxicity) and various test method protocols. Additionally, the paper discusses the challenges and provides updated knowledge and recommendation on selective-fire mechanisms such as rapid-fire spread, air cavity and fire re-entry behaviours due to dripping and melting of lightweight composite claddings.

Design/methodology/approach

A comprehensive literature review on fire behaviour, fire hazard and testing methods of lightweight composite claddings has been conducted in this research. In summarising all possible fire hazards, particular attention is given to the potential impact of toxicity of lightweight cladding fires. In addition, various criteria for fire performance evaluation of lightweight composite claddings are also highlighted. These evaluations are generally categorised as small-, intermediate- and large-scale test methods.

Findings

The major challenges of lightweight claddings are rapid fire spread, smoke production and toxicity and inconsistency in fire testing.

Originality/value

The review highlights the current challenges in cladding fire, smoke toxicity, testing system and regulation to provide some research recommendations to address the identified challenges.

Details

Journal of Structural Fire Engineering, vol. 12 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 11 July 2019

Hendrig Marx and Richard Walls

The Southern African Institute of Steel Construction has developed a novel cellular beam structure (CBS) for multi-storey buildings that is entirely devoid of concrete. Channel…

Abstract

Purpose

The Southern African Institute of Steel Construction has developed a novel cellular beam structure (CBS) for multi-storey buildings that is entirely devoid of concrete. Channel sections between the cellular beams support a complex sandwich flooring system, which contains a fire-resistant ceiling board, metal sheeting, an interior fibre-cement board and an access-flooring system. As for all structures, the CBS requires a fire rating. This paper aims to investigate the thermal behaviour of the CBS using numerical modelling and experimental fire testing, as it has a unique setup.

Design/methodology/approach

Experimental fire tests on the flooring system were conducted to validate finite element models, which were developed in ABAQUS. These models were then extended to include floor beams and the structural steelwork.

Findings

Good correlations were found between the experimental and numerical results, with temperature variations typically in the range of 0-5%, although with localised differences of up to 20%. This allowed larger finite element models, representing the sandwich floor system of the CBS, to be developed and analysed. A 1-hour rating can be obtained by the system in terms of insulation and integrity requirements.

Practical implications

The CBS allows for more economical steel structures, due to the rapid construction of its modular panels. A suitable fire resistance will ensure the safety of the occupants and prevent major structural damage. Steelwork and flooring temperatures are determined which has allowed for global structural analyses to be carried out.

Originality/value

The originality of this study lies in thermal analysis and testing of a new cellular beam flooring system, through determining behaviour in fire, along with beam temperatures.

Article
Publication date: 1 April 1950

J.A. Jones and R.V. Niswander

THE occurrence of isolated fires in commercial, passenger carrying aircraft has focused considerable attention upon the fire risks involved in the use of combustible materials…

Abstract

THE occurrence of isolated fires in commercial, passenger carrying aircraft has focused considerable attention upon the fire risks involved in the use of combustible materials, the arrangement of functional equipment and accessories, and the effectiveness of fire‐proof finishes and coatings. In addition to other studies concerning the elimination of fire hazard through careful survey of the electrical system and other functional systems, studies have been made concerning the improvement of the ignition resistance of materials and the subsequent propagation of fire. Serious fires have developed as a result of propagation by materials which were not responsible for the original ignition of fire. An intensive effort has been made to reduce this fire hazard by the development and application of protective coatings and finishes to vulnerable and combustible materials. This work led to the obvious need for, and development of, a testing apparatus by which a realistic comparison could be made of combustible materials under conditions simulating those of an actual fire.

Details

Aircraft Engineering and Aerospace Technology, vol. 22 no. 4
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 23000