Search results

1 – 10 of 15
Article
Publication date: 24 October 2023

Mohammad A. Hassanain and Zayed A. Albugami

Community centers play a socio-economic and urban role of combining different communal necessities, that serve inhabitants, at different neighborhoods in cities. Their role…

Abstract

Purpose

Community centers play a socio-economic and urban role of combining different communal necessities, that serve inhabitants, at different neighborhoods in cities. Their role emerged in importance as being a hub for improving and customizing quality of life experiences of the public. This research presents a code-based risk assessment tool for evaluating fire safety measures that can be adapted in the context of community centers. It also provides an exemplary case study to demonstrate its application.

Design/methodology/approach

The study identified the factors that render community centers as a high-risk type of facilities in fire events. Various fire codes and standards were reviewed to describe the relevant fire safety measures. A code-based fire risk assessment tool was developed and implemented, through a case study. A set of recommendations were developed to improve the fire safety conditions of the case study facility.

Findings

Several violations to fire safety were identified in the case study building. The findings led to identifying a set of recommendations to improve its fire safety conditions.

Practical implications

This research introduced a systematic approach to raise awareness about fire incidences and consequences in community centers, and provides facilities managers with a tool, to assess compliance based on international fire code requirements.

Originality/value

In fire events, community centers are considered as high-risk facilities that may lead to significant losses of human lives and damages to assets. It is significant to study the causes of fire, for ensuring effective prevention and safe operations.

Details

International Journal of Emergency Services, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2047-0894

Keywords

Article
Publication date: 3 November 2023

Vimala Balakrishnan, Aainaa Nadia Mohammed Hashim, Voon Chung Lee, Voon Hee Lee and Ying Qiu Lee

This study aims to develop a machine learning model to detect structure fire fatalities using a dataset comprising 11,341 cases from 2011 to 2019.

30

Abstract

Purpose

This study aims to develop a machine learning model to detect structure fire fatalities using a dataset comprising 11,341 cases from 2011 to 2019.

Design/methodology/approach

Exploratory data analysis (EDA) was conducted prior to modelling, in which ten machine learning models were experimented with.

Findings

The main fatal structure fire risk factors were fires originating from bedrooms, living areas and the cooking/dining areas. The highest fatality rate (20.69%) was reported for fires ignited due to bedding (23.43%), despite a low fire incident rate (3.50%). Using 21 structure fire features, Random Forest (RF) yielded the best detection performance with 86% accuracy, followed by Decision Tree (DT) with bagging (accuracy = 84.7%).

Research limitations/practical implications

Limitations of the study are pertaining to data quality and grouping of categories in the data pre-processing stage, which could affect the performance of the models.

Originality/value

The study is the first of its kind to manipulate risk factors to detect fatal structure classification, particularly focussing on structure fire fatalities. Most of the previous studies examined the importance of fire risk factors and their relationship to the fire risk level.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 18 August 2023

Deanna Craig and M.Z. Naser

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply…

Abstract

Purpose

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply, fire can break out anywhere, at any time and for any number of reasons. Despite the apparent need, the fire design of structures still relies on expensive fire tests, complex finite element simulations and outdated procedures with little room for innovation. This paper aims to discuss the aforementioned issues.

Design/methodology/approach

This primer highlights the latest state of the art in this area with regard to performance-based design in fire structural engineering. In addition, this short review also presents a series of examples of successful implementation of performance-based fire design of structures from around the world.

Findings

A comparison between global efforts clearly shows the advances put forth by European and Oceanian efforts as opposed to the rest of the world. In addition, it can be clearly seen that most performance-based fire designs are related to steel and composite structures.

Originality/value

In one study, this paper presents a concise and global view to performance-based fire design of structures from success stories from around the world.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 January 2024

Anas M.M. Awad, Ketut Wikantika, Haytham Ali, Sohaib K.M. Abujayyab and Javad Hashempour

The rapid development of urban areas in Sleman District, Indonesia, has created new challenges for firefighting response services. One of the primary challenges is to identify the…

Abstract

Purpose

The rapid development of urban areas in Sleman District, Indonesia, has created new challenges for firefighting response services. One of the primary challenges is to identify the optimal locations for new fire stations, to improve service quality and maximize service coverage within the specified time.

Design/methodology/approach

This paper proposes a method for precisely calculating travel time that integrates delay time caused by traffic lights, intersections and congestion. The study highlights the importance of precise calculation of travel time in order to provide a more accurate understanding of the service area covered by the fire stations. The proposed method utilizes network analysis in ArcGIS, the analytical hierarchy process (AHP) and simple additive weighting (SAW) to accurately calculate travel time and to identify the best locations for new fire stations. The identification of new site was based on service safety, service quality, service costs and demographic factors and applied to the Sleman district in Indonesia.

Findings

The results showed that the total area covered by old and new fire stations decreased from 61% to 31.8% of the study area when the adjusted default speed scenario was implemented.

Practical implications

The results indicated that the default speed scenario could provide misleading information about the service area, while the adjusted default speed scenario improved service quality and maximized service coverage.

Originality/value

The proposed method provides decision-makers with an effective tool to make informed decisions on optimal locations for new fire stations and thus enhance emergency response and public safety.

Details

International Journal of Emergency Services, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2047-0894

Keywords

Article
Publication date: 30 June 2023

Aishwarya Narang, Ravi Kumar, Amit Kumar Dhiman, Ravi Shankar Pandey and Pavan Kumar Sharma

This study describes a series of experiments investigating the upper hot layer temperature profile in a confined space under different ventilation conditions for…

Abstract

Purpose

This study describes a series of experiments investigating the upper hot layer temperature profile in a confined space under different ventilation conditions for porosity-controlled wood crib fires for pre-flashover conditions.

Design/methodology/approach

Full-scale compartment (4 m × 4 m × 4 m) experiments were carried out for four-door openings, i.e. 100%, 75%, 50% and 25% of the total vent area (2 m × 1 m) with the wood crib as a fuel load. The temperature of the upper hot smoke layers of the compartment was recorded with the help of four layers of thermocouples for varying vent areas.

Findings

The effect of ventilation on the properties, i.e. mass loss rate, enclosure temperature, heat release rate and carbon monoxide (CO) gas concentration, has been measured and analyzed. The effect of ventilation on heat flux and flame temperature has also been studied. Compartment gas temperature has been examined by five wood crib burning stages: Ignition, growth, steady burning, recess and collapse.

Originality/value

Findings demonstrate that the influence of vent openings varies for the burning parameters and upper layer temperature of the compartment. The current results are beneficial in analyzing thermal risks concerning compartment fire and fire safety engineering projects.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 January 2024

Jingqi Zhang, Shaohua Jiang and Xiaomin Qi

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the…

Abstract

Purpose

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the management level of fire evacuation site. Make up for the difficulties of BIM technology in effectively connecting building information and fire data.

Design/methodology/approach

First, this paper establishes a fire model and an evacuation model based on BIM information. Then, the safety index (SI) is introduced as a comprehensive index, and the IRI is established by integrating the SI function to evaluate the safety of evacuation routes. Based on these two indices, the IRI-based fire evacuation model is established.

Findings

This study offers an Improved Risk Index (IRI)-based fire evacuation model, which may achieve effective evacuation in fire scenes. And the model is verified by taking the fire evacuation of a shopping center building as an example.

Originality/value

This paper proposes a fire evacuation principle based on IRI, so that the relevant personnel can comprehensively consider the fire factors and evacuation factors to achieve the optimization of building design, thereby improving the fire safety of buildings.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 November 2023

Marcus Achenbach and Guido Morgenthal

The design check regarding the fire resistance of concrete slabs can be easily performed using tabulated values. These tables are based on experimental results, but the level of…

Abstract

Purpose

The design check regarding the fire resistance of concrete slabs can be easily performed using tabulated values. These tables are based on experimental results, but the level of safety, which is obtained by this approach, is not known. On the other hand, performance-based methods are more accepted, but require a target reliability as performance criterion. Hence, there is a need for calibration of the performance-based methods using the results of the “traditional” descriptive approach.

Design/methodology/approach

The calibration is performed for a single span concrete slab, where the axis distance of the reinforcement is chosen according to Eurocode 2 for a defined fire rating. A “standard” compartment is selected to cover typical fields of application. The opening factor is considered as parameter to obtain the maximum peak temperatures in the compartment. A Monte Carlo simulation, in combination with a response surface method, is set up to calculate the probabilities of failure.

Findings

The results indicate that the calculated reliability index for a standard is within the range, which has been used for the derivation of safety and combination factors in the Eurocodes. It can be observed that members designed for a fire rating R90 have a significant increase in the structural safety for natural fires compared to a design for a fire rating R30.

Originality/value

The level of safety, which is obtained by a design based on tabulated values, is quantified for concrete slabs. The results are a necessary input for the calibration of performance-based methods and could stimulate discussions among scientists and building authorities.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 20 October 2023

Olufisayo Adedokun and Temitope Egbelakin

Of all the deaths associated with disasters, bushfires account for 40% of these fatalities. The resulting fatalities are consequent upon householders’ decision-making, leading to…

Abstract

Purpose

Of all the deaths associated with disasters, bushfires account for 40% of these fatalities. The resulting fatalities are consequent upon householders’ decision-making, leading to late or non-evacuation from at-risk communities. However, while decision-making is a function of risk perception, this paper aims to investigate householders’ perceptions of bushfire risks following the catastrophic Black Summer bushfires of 2019/2020.

Design/methodology/approach

An inductive research approach was adopted. Thirty semi-structured interviews were conducted to elicit qualitative data from southeastern NSW, Australia householders. The data were collected via face-to-face and online Zoom. Each interview was recorded, transcribed using Otter.AI and thematically analyzed with NVivo 12 Pro (Braun and Clarke, 2006, 2019). In addition, inter-rater reliability was done by engaging an independent researcher to code the de-identified data independently. The codes were cross-checked for reliability and adjusted where necessary.

Findings

It was found that bushfire risk perceptions were high among the householders in bushfire at-risk communities following the 2019/2020 Black Summer bushfires. High levels of perceptions were recorded among the participants regarding the likelihood of bushfire occurrence, concern for bushfires, severity of bushfires and vulnerability to bushfire threats.

Research limitations/implications

The study’s results do not reflect all householders in the southeastern part of NSW. It was limited to 30 householders who indicated their intentions to participate and are living in the study area. Therefore, future studies should be undertaken with more participants from broader geographical areas, including emergency responders like firefighters, recovery officers and non-government organizations in charge of recovery operations. This study will add to the prioritization of risk perceptions.

Practical implications

All else being equal, elevated bushfire risk perceptions among participants can potentially decrease the fatalities linked with bushfires and their subsequent ripple effects. This holds particularly true when residents opt for early self-evacuation from at-risk communities.

Social implications

The paper contributes to developing a better understanding of the bushfire risk perceptions underlying the evacuation decision-making of the residents in bushfire at-risk communities in south-eastern NSW of Australia.

Originality/value

The paper contributes to the existing knowledge on bushfire risks by providing insights into residents’ perceptions after the catastrophic 2019/2020 Black Summer bushfires. As a qualitative study, it describes bushfire risk perceptions on four themes: likelihood, concern, severity and vulnerability, which is uncommon in many bushfire studies.

Details

International Journal of Disaster Resilience in the Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 23 September 2022

Dinesh R., Stanly Jones Retnam, Dev Anand M. and Edwin Raja Dhas J.

The demand for energy is increasing massively due to urbanization and industrialization. Due to the massive usage of diesel engines in the transportation sector, global warming is…

Abstract

Purpose

The demand for energy is increasing massively due to urbanization and industrialization. Due to the massive usage of diesel engines in the transportation sector, global warming is increasing rapidly. The purpose of this paper is to use hydrogen as the potential alternative for diesel engine.

Design/methodology/approach

A series of tests conducted in the twin cylinder four stroke diesel engine at various engine speeds. In addition to the hydrogen, the ultrasonication is applied to add the nanoparticles to the neat diesel. The role of nanoparticles on engine performance is effective owing to its physicochemical properties. Here, neat diesel mixed 30% of biodiesel along with the hydrogen at the concentration of 10%, 20% and 30% and 50 ppm of graphite oxide to form the blends DNH10, DNH20 and DNH30.

Findings

Inclusion of both hydrogen and nanoparticles increases the brake power and brake thermal efficiency (BTE) of the engine with relatively less fuel consumption. Compared to all blends, the maximum BTE of 33.3% has been reported by 30% hydrogen-based fuel. On the contrary, the production of the pollutants also reduces as the hydrogen concentration increases.

Originality/value

Majority of the pollutants such as carbon monoxide, carbon dioxide and hydrocarbon were dropped massively compared to diesel. On the contrary, there is no reduction in nitrogen of oxides (NOx). Highest production of NOx was witnessed for 30% hydrogen fuel due to the premixed combustion phase and cylinder temperatures.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 December 2023

Nivin Vincent and Franklin Robert John

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to…

Abstract

Purpose

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to fulfil future needs; to determine the viability of particular strategies and actions performed to increase the process efficiency of electrical discharge machining; and to uphold the values of sustainability in the nonconventional manufacturing sector and to identify future works in this regard.

Design/methodology/approach

A thorough analysis of numerous experimental studies and findings is conducted. This prominent nontraditional machining process’s potential machinability and sustainability challenges are discussed, along with the current research to alleviate them. The focus is placed on modifications to the dielectric fluid, choosing affordable substitutes and treating consumable tool electrodes.

Findings

Trans-esterified vegetable oils, which are biodegradable and can be used as a substitute for conventional dielectric fluids, provide pollution-free machining with enhanced surface finish and material removal rates. Modifying the dielectric fluid with specific nanomaterials could increase the machining rate and demonstrate a decrease in machining flaws such as micropores, globules and microcracks. Tool electrodes subjected to cryogenic treatment have shown reduced tool metal consumption and downtime for the setup.

Practical implications

The findings suggested eco-friendly machining techniques and optimized control settings that reduce energy consumption, lowering operating expenses and carbon footprints. Using eco-friendly dielectrics, including vegetable oils or biodegradable dielectric fluids, might lessen the adverse effects of the electrical discharge machine operations on the environment. Adopting sustainable practices might enhance a business’s reputation with the public, shareholders and clients because sustainability is becoming increasingly significant across various industries.

Originality/value

A detailed general review of green nontraditional electrical discharge machining process is provided, from high-quality indexed journals. The findings and results contemplated in this review paper can lead the research community to collectively apply it in sustainable techniques to enhance machinability and reduce environmental effects.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 15