Search results

1 – 10 of 286
Article
Publication date: 19 December 2023

Sandra Vaiciulyte, Helen Underhill and Elizabeth Reddy

Fires have the potential to destroy, resulting in the loss of property and livelihoods, as well as injury, death and repeated trauma for those who are already vulnerable. However…

Abstract

Purpose

Fires have the potential to destroy, resulting in the loss of property and livelihoods, as well as injury, death and repeated trauma for those who are already vulnerable. However, fire as a hazard has been treated rigidly and un-critically, a model that has influenced how it is perceived by policy makers, first responders, engineers and academics and subsequently approaches to implementing and better understanding fire prevention, mitigation, response and recovery from the impacts of fire.

Design/methodology/approach

This article deals with fire, arguing that its case can help imagine what liberation might mean within and for disaster studies. The study argues against dogmatic, outdated, technological and solution-focused perspectives that have constrained how fire and its effects are understood and discuss what disciplinary liberation could mean for the study of fire and its integration within DRR. The study’s approach is based on the DRR Assemblage Theory, which points to fire as an issue at a societal level.

Findings

The study explores the themes of fire and liberation through contributions and insights that have emerged through the authors' professional experience in research and practice. It offers an original and timely engagement with disaster studies through the lens of fire, an increasingly pertinent phenomenon for disaster scholars and practitioners alike.

Originality/value

By drawing on the example of fire as a socio-technical-environmental phenomenon, this paper contributes a novel perspective on the intellectual and practical possibilities that can emerge from disciplinary liberation.

Details

Disaster Prevention and Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0965-3562

Keywords

Open Access
Article
Publication date: 20 August 2020

J.C. Gaillard, Etienne Marie Casing-Baring, Dewy Sacayan, Marjorie Balay-as and Michelle Santos

This brief is designed to inform disaster risk reduction and management in Philippine jails and prisons. It draws upon research conducted in nine jails and prisons between July…

Abstract

This brief is designed to inform disaster risk reduction and management in Philippine jails and prisons. It draws upon research conducted in nine jails and prisons between July 2015 and January 2016. This research included 44 interviews with stakeholders, including inmates and prisoners, and nine focus groups with inmates and prisoners in different regions of the country. The research indicates that natural hazards are one amongst the many threats that inmates and prisoners face in their everyday life. Natural hazards are significant because inmates and prisoners are particularly vulnerable. Inmates' and prisoners' vulnerability stems from a thread of proximate and root causes that range from insalubrious and overcrowded facilities and limited resourcing from the government, to the neoliberal nature of the Philippine state. However, inmates and prisoners are not helpless “victims” in dealing with natural hazards. They display a wide range of skills, resources and knowledge (i.e. capacities) that are grounded in everyday practices and values reflective of the broader Philippine society. This policy brief finally makes some recommendations for strengthening hazard prevention, fostering vulnerability mitigation, enhancing preparedness, and reinforcing disaster management in Philippine jails and prisons. These recommendations emphasise the contributions of a number of stakeholders, including the active role of inmates and prisoners who are the first line of defence in facing disasters in jails and prisons.

Details

Emerald Open Research, vol. 1 no. 13
Type: Research Article
ISSN: 2631-3952

Keywords

Article
Publication date: 24 October 2023

Mohammad A. Hassanain and Zayed A. Albugami

Community centers play a socio-economic and urban role of combining different communal necessities, that serve inhabitants, at different neighborhoods in cities. Their role…

Abstract

Purpose

Community centers play a socio-economic and urban role of combining different communal necessities, that serve inhabitants, at different neighborhoods in cities. Their role emerged in importance as being a hub for improving and customizing quality of life experiences of the public. This research presents a code-based risk assessment tool for evaluating fire safety measures that can be adapted in the context of community centers. It also provides an exemplary case study to demonstrate its application.

Design/methodology/approach

The study identified the factors that render community centers as a high-risk type of facilities in fire events. Various fire codes and standards were reviewed to describe the relevant fire safety measures. A code-based fire risk assessment tool was developed and implemented, through a case study. A set of recommendations were developed to improve the fire safety conditions of the case study facility.

Findings

Several violations to fire safety were identified in the case study building. The findings led to identifying a set of recommendations to improve its fire safety conditions.

Practical implications

This research introduced a systematic approach to raise awareness about fire incidences and consequences in community centers, and provides facilities managers with a tool, to assess compliance based on international fire code requirements.

Originality/value

In fire events, community centers are considered as high-risk facilities that may lead to significant losses of human lives and damages to assets. It is significant to study the causes of fire, for ensuring effective prevention and safe operations.

Details

International Journal of Emergency Services, vol. 13 no. 1
Type: Research Article
ISSN: 2047-0894

Keywords

Open Access
Article
Publication date: 1 March 2022

Elisabetta Colucci, Francesca Matrone, Francesca Noardo, Vanessa Assumma, Giulia Datola, Federica Appiotti, Marta Bottero, Filiberto Chiabrando, Patrizia Lombardi, Massimo Migliorini, Enrico Rinaldi, Antonia Spanò and Andrea Lingua

The study, within the Increasing Resilience of Cultural Heritage (ResCult) project, aims to support civil protection to prevent, lessen and mitigate disasters impacts on cultural…

2047

Abstract

Purpose

The study, within the Increasing Resilience of Cultural Heritage (ResCult) project, aims to support civil protection to prevent, lessen and mitigate disasters impacts on cultural heritage using a unique standardised-3D geographical information system (GIS), including both heritage and risk and hazard information.

Design/methodology/approach

A top-down approach, starting from existing standards (an INSPIRE extension integrated with other parts from the standardised and shared structure), was completed with a bottom-up integration according to current requirements for disaster prevention procedures and risk analyses. The results were validated and tested in case studies (differentiated concerning the hazard and type of protected heritage) and refined during user forums.

Findings

Besides the ensuing reusable database structure, the filling with case studies data underlined the tough challenges and allowed proposing a sample of workflows and possible guidelines. The interfaces are provided to use the obtained knowledge base.

Originality/value

The increasing number of natural disasters could severely damage the cultural heritage, causing permanent damage to movable and immovable assets and tangible and intangible heritage. The study provides an original tool properly relating the (spatial) information regarding cultural heritage and the risk factors in a unique archive as a standard-based European tool to cope with these frequent losses, preventing risk.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 14 no. 2
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 12 January 2024

Jingqi Zhang, Shaohua Jiang and Xiaomin Qi

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the…

Abstract

Purpose

The purpose of this paper is to conduct a comprehensive study on building, fire and evacuation, so as to effectively improve the efficiency of building fire evacuation and the management level of fire evacuation site. Make up for the difficulties of BIM technology in effectively connecting building information and fire data.

Design/methodology/approach

First, this paper establishes a fire model and an evacuation model based on BIM information. Then, the safety index (SI) is introduced as a comprehensive index, and the IRI is established by integrating the SI function to evaluate the safety of evacuation routes. Based on these two indices, the IRI-based fire evacuation model is established.

Findings

This study offers an Improved Risk Index (IRI)-based fire evacuation model, which may achieve effective evacuation in fire scenes. And the model is verified by taking the fire evacuation of a shopping center building as an example.

Originality/value

This paper proposes a fire evacuation principle based on IRI, so that the relevant personnel can comprehensively consider the fire factors and evacuation factors to achieve the optimization of building design, thereby improving the fire safety of buildings.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 December 2023

Yuan Li, Yanzhi Xia, Min Li, Jinchi Liu, Miao Yu and Yutian Li

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric…

Abstract

Purpose

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric analysis, vertical flame test, limiting oxygen index (LOI) and cone calorimeter test.

Design/methodology/approach

The advantages of different fibers can be combined by blending, and the defects may be remedied. The study investigates whether incorporating alginate fibers into aramid fibers can enhance the flame retardancy and reduce the smoke production of prepared aramid/alginate blended nonwoven fabrics.

Findings

Thermogravimetric analysis indicated that alginate fibers could effectively inhibit the combustion performance of aramid fibers at a higher temperature zone, leaving more residual chars for heat isolation. And vertical flame test, LOI and cone calorimeter test testified that the incorporation of alginate fibers improved the flame retardancy and fire behaviors. When the ratio of alginate fibers for aramid/alginate blended nonwoven fabrics reached 80%, the incorporation of alginate fibers could notably decreased peak-heat release rate (54%), total heat release (THR) (29%), peak-smoke production rate (93%) and total smoke production (86%). What is more, the lower smoke production rate and lower THR of the blends vastly reduced the risk of secondary injury in fires.

Originality/value

This study proposes to inhibit the flue gas release of aramid fiber and enhance the flame retardant by mixing with alginate fiber, and proposes that alginate fiber can be used as a biological smoke inhibitor, as well as a flame retardant for aramid fiber.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 November 2023

Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla and M.Z. Naser

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Abstract

Purpose

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Design/methodology/approach

A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire.

Findings

The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios.

Originality/value

There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 April 2023

Daas Samia and Innal Fares

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…

Abstract

Purpose

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.

Design/methodology/approach

The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.

Findings

A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.

Research limitations/implications

This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.

Originality/value

Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 12 April 2022

Shivani Chouhan, Aishwarya Narang and Mahua Mukherjee

In the event of a disaster, educational institutions like schools serve as lifeline buildings. Hence, it is crucial to safeguard these buildings for the communities that may…

Abstract

Purpose

In the event of a disaster, educational institutions like schools serve as lifeline buildings. Hence, it is crucial to safeguard these buildings for the communities that may depend on the school as a disaster shelter and aid center. Thus, this paper aims to conduct a multihazard risk assessment survey at 50 schools (with 246 building blocks) in Dehradun.

Design methodology approach

The past few decades have witnessed the impact of multihazard frequency in Uttarakhand, India, due to the geographical features of the Himalayas and its neo-tectonic mountain-building process. Dehradun is the capital of Uttarakhand state and comes under seismic zone IV, which is highly prone to earthquakes.

Findings

The hazard assessment is divided into two types of surveys: first, building-level surveys that include rapid visual screening, nonstructural risk assessment and fire safety audit, and second, campus-level surveys that include vulnerability analysis for earthquake, flood, industrial hazard, landslide and wind.

Social implications

This paper will list several gaps and unrecognized practices in the region that increase the schools’ multihazard risk. The study’s outcome will help prioritize the planning of disaster awareness, retrofitting execution, future construction practices and decision-making to minimize the risk and prepare the school for the upcoming disasters.

Originality value

Physical data were collected by the author to determine the multihazard risk analysis in 50 schools in the Dehradun District of Uttarakhand, India. The building- and campus-level surveys have been used to generate a database for the retrofit and renovation process for each individual school to use their budget fruitfully and in a planned way. The survey conducted is more effort and a more detailed risk evaluation which necessitates effectively mitigating and ensuring the potential safety of the region’s schools.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 1
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 30 November 2023

Mark Pim-Wusu, Eric Kwame Simpeh and Jeremiah N-Nanajeri Simberi

Fire is the fundamental element of most people’s lives, and when not controlled, the same fire can lead to several catastrophes in homes, offices, schools, lives and other public…

Abstract

Purpose

Fire is the fundamental element of most people’s lives, and when not controlled, the same fire can lead to several catastrophes in homes, offices, schools, lives and other public places with severe repercussions. Hence, this study aims to examine the adequacy and extent of the application of fire suppression systems in residential and commercial property in Ghana.

Design/methodology/approach

This study adopts a sequential mixed-mode design comprising quantitative and qualitative research strategies to analyse factors to produce findings. The target population for this study includes shop occupiers, end users of office buildings, and residents in the Accra Central of Ghana. Systematic random sampling was used for the quantitative research, and a sample size of 385 was obtained using a multi-stage and cluster sampling method. A structured survey and semi-structured interviews were used to collect the primary data. The quantitative data were analysed using descriptive and inferential statistics, whereas the qualitative data were analysed using content analysis.

Findings

From an empirical literature review and the analysis, the three main factors contributing to fire breakouts are equipment malfunction, improper use of heat sources and human mistakes. According to the respondents, fire suppression systems were also inadequate, as most of the suppression systems prescribed in the building code were unavailable. Regarding the ability to manually operate fire suppression systems, most property occupiers stated that they are generally unaware of these suppression systems.

Practical implications

This study will aid policymakers in developing interventions for fire safety enforcement by ensuring that fire safety regulations are consistently followed by design team members and property developers, resulting in a positive effect on public building structures performing their required functions. It is also critical to provide end users with education and training on how to operate the fire suppression system as well as effective handling of firefighting installations in the event of a fire.

Originality/value

The findings of this investigation contribute to knowledge and comprehension of the effect of fire suppression systems on building users and may serve as a precursor to the development of a “As Built” certification system for ascertaining the adequacy of fire suppression systems for new and existing residential and commercial property.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 286