Search results

1 – 10 of over 5000
Article
Publication date: 23 November 2021

Mohamed A. Khalifa, Mohamed A. Aziz, Mohamed Hamza, Saber Abdo and Osama A. Gaheen

Fire door should withstand a high temperature without deforming. In the current paper, the challenges of improving the behaviour of the conventional fire door were described using…

Abstract

Purpose

Fire door should withstand a high temperature without deforming. In the current paper, the challenges of improving the behaviour of the conventional fire door were described using various internal stiffeners in pair swinging-type fire door.

Design/methodology/approach

The temperature distribution on the outside door surface was measured with distributed eight thermocouples. Subsequently the internal side was cooled with pressurized water hose jet stream of 4 bar. The transient simulation for the thermal and structure analysis was conducted using finite element modelling (FEM) with ANSYS 19. The selected cross sections during numerical simulation were double S, double C and hat omega stiffeners applied to 2.2 m and 3 m door length.

Findings

During the FEM analysis, the maximum deformations were 7.2028, 5.4299, 5.023 cm for double S, double C and hat omega stiffeners for 2.2 m door length and 6.57, 4.26, 2.1094 cm for double S, double C and hat omega stiffeners for 3 m door length. Finally, hat omega gives more than three times reduction in the deformation of door compared to double S stiffeners which provided a reference data to the manufacturers.

Research limitations/implications

The research limitation included the limited number of fire door tests due to the high cost of single test, and the research implication was to achieve an optimal study in fire door design.

Practical implications

Achieving the optimum design for the internal door stiffeners where the hat omega stiffener gives minimum door deformation compared to the other stiffeners was considered the practical implication. The work included two experimental fire door tests according to the standard fire test (ANSI/UL 10C – Positive Pressure of Fire Tests of Door Assemblies) for a door of 2.2 m length with double S stiffeners and a door of 3 m length with hat omega stiffeners, which achieved minimum deformation.

Originality/value

The behavior and mechanical response of door leaf were improved through using internal hat omega stiffeners under fire testing. This study was achieved using FEM in ANSYS 19 for six cases of different lengths and stiffeners for fire doors. The simulation model showed a very close agreement with the experimental results with an error of 0.651% for double S and 1.888% for hat omega.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 May 1985

David Tong and Colin Todd

One of the facilities manager's continuing problems is meeting his responsibilities with respect to fire safety. In this field he is working with difficult legal requirements…

Abstract

One of the facilities manager's continuing problems is meeting his responsibilities with respect to fire safety. In this field he is working with difficult legal requirements, fragmented among many local statutes, ad hoc standards and recommendations. To meet these requirements he must call upon his full range of skills. He must be able to balance a concern for hardware and technology with a need to ensure that building occupants are trained and that an effective fire plan is in existence.

Details

Facilities, vol. 3 no. 5
Type: Research Article
ISSN: 0263-2772

Article
Publication date: 5 May 2022

Charlie Hopkin and Simon Lay

The proposed use of unlatched, reverse swing flappy doors is becoming widespread in the design of residential common corridor smoke control systems. This article explores the…

Abstract

Purpose

The proposed use of unlatched, reverse swing flappy doors is becoming widespread in the design of residential common corridor smoke control systems. This article explores the conceptual arguments for and against the use of these systems.

Design/methodology/approach

This article relies on industry experience, with reference to relevant building design practices, standards and research literature, to categorise arguments. These are collated into four common areas of concern relating to compartmentation, reliability, depressurisation and modelling practices. A final comparison is made between different common corridor smoke control system types for these four areas.

Findings

The article highlights several concerns around the use of flappy door systems, including the enforced breaches in stair compartmentation, uncertainties around system reliability, the reliance on door closers as a single point of failure, the impact of day-to-day building use on the system performance and the false confidence that modelling assessments can provide in demonstrating adequacy. The article concludes in suggesting that alternative smoke control options be considered in place of flappy door systems.

Originality/value

Discussion on the use of flappy door smoke control systems has been ongoing within the fire engineering community for several years, but there is limited public literature available on the topic. By collating the common arguments relating to these systems into a single article, a better understanding of their benefits and pitfalls has been provided for consideration by building design and construction professionals.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 28 February 2019

Prabhakar Sathujoda, Paul Arnell and Andrew Deans

As fire doors are passive fire protection parts, the doors have to be certified through standard fire tests. It is usual practice to perform the standard fire testing on the…

Abstract

Purpose

As fire doors are passive fire protection parts, the doors have to be certified through standard fire tests. It is usual practice to perform the standard fire testing on the components which require the fire certification. However, some gas turbine enclosure doors are too large to test at the test facility and hence the fire resistance test is practically not possible. The purpose of this paper is to develop a reliable finite element model, validate the model using the specimen door test results and extend the method to actual gas turbine enclosure doors to support the fire certification.

Design/methodology/approach

First, the standard fire testing on enclosure door test specimen was carried out. Second, the finite element analysis model was built and tuned to match the standard fire test deflections, and finally, the same modelling technique was extended to model the actual gas turbine enclosure door to verify the results for fire certification process.

Findings

Gap analysis, a method of post processing is suggested for result analysis. It was found suitable to verify the gap openings which are required for A0 rated fire certification according to fire test procedure code and also to check the mechanical integrity of the enclosure door frame assembly.

Originality/value

The method presented in this work could be used as support information along with the test specimen results for A0 class fire rating certification of the doors according to International Maritime Organization Resolution MSC.307 (88) Annexure 1: Part 3.

Details

Journal of Structural Fire Engineering, vol. 10 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 30 August 2022

Ilias Thanasoulas, Dan Lauridsen, Bjarne Paulsen Husted and Luisa Giuliani

The purpose of this study is to contribute toward providing the main aspects of numerical modeling the fire behavior of steel structures with finite elements (FEs). The…

Abstract

Purpose

The purpose of this study is to contribute toward providing the main aspects of numerical modeling the fire behavior of steel structures with finite elements (FEs). The application of the method is presented for a characteristic case study comprising the series of large-scale fire door tests performed at the Danish Institute of Fire and Security Technology.

Design/methodology/approach

Following a general overview of current practices in structural fire engineering, the FE method is used to simulate the large-scale furnace tests on steel doors with thermal insulation exposed to standard fire.

Findings

The FE model is compared with the fire test results, achieving good agreement in terms of developed temperatures and deformations.

Originality/value

The numerical methodology and recommended practices for modeling the fire behavior of steel structures are presented, which can be used in support of performance-based fire design standards.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 May 2017

Abubakar S. Mahmoud, Muizz O. Sanni-Anibire and Mohammad A. Hassanain

The purpose of this paper is to present the findings of a theoretical calculation for the emergency evacuation of an auditorium facility managed by a university in Saudi Arabia.

Abstract

Purpose

The purpose of this paper is to present the findings of a theoretical calculation for the emergency evacuation of an auditorium facility managed by a university in Saudi Arabia.

Design/methodology/approach

The authors reviewed the published literature to identify the sources of fire incidence, guidelines for means of escape in assembly occupancies and human behavior in fire emergencies. The theoretical method of the SFPE handbook to estimate the required evacuation time was subsequently applied to a case study of an auditorium facility managed by a university located in Saudi Arabia. Finally, the authors developed recommendations for the performance-based fire safety evacuation of the auditorium facility under review.

Findings

The study showed that a total of 6 minutes 39 seconds is needed to evacuate the whole auditorium. However, reviewed literature for assembly occupancies requires between 4 minutes 30 seconds and 6 minutes 24 seconds for total evacuation. Though, the calculated evacuation time is close to generally acceptable limits. It was noted that overcrowding and bottlenecks may be formed in some of the exit routes.

Originality/value

This paper will stimulate and increase research and industry concern for performance-based design of assembly-type facilities. This will be of significant value to designers, engineers, facilities managers, and owners in ensuring the safety of occupants in assembly-type facilities.

Details

International Journal of Building Pathology and Adaptation, vol. 35 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 March 2001

K.G.B. Bakewell

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18;…

18693

Abstract

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Structural Survey, vol. 19 no. 3
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 1 September 2001

Index by subjects, compiled by K.G.B. Bakewell covering the following journals: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management…

14786

Abstract

Index by subjects, compiled by K.G.B. Bakewell covering the following journals: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Facilities, vol. 19 no. 9
Type: Research Article
ISSN: 0263-2772

Article
Publication date: 1 March 2001

K.G.B. Bakewell

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18;…

14404

Abstract

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Property Management, vol. 19 no. 3
Type: Research Article
ISSN: 0263-7472

Article
Publication date: 1 May 2001

K.G.B. Bakewell

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18;…

14170

Abstract

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Journal of Property Investment & Finance, vol. 19 no. 5
Type: Research Article
ISSN: 1463-578X

1 – 10 of over 5000