Search results

11 – 20 of over 16000
Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1128

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1203

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 August 2019

Javad Tashakori, Sara Ansari and Javad Razzaghi

During severe earthquakes, the inelastic energy dissipation of eccentrically braced frame system depends on shear links performance. A finite element model can predict links…

Abstract

Purpose

During severe earthquakes, the inelastic energy dissipation of eccentrically braced frame system depends on shear links performance. A finite element model can predict links behavior appropriately if the factors causing large discrepancies are recognized and modified. The paper aims to discuss this issue.

Design/methodology/approach

In order to achieve this, the present paper discusses the cyclic response of five types of shear links constructed of various steel grades that ranged from 100 to 485 MPa yield strength. Finite element models are verified by experimental results. As these links have substantial differences in strain hardening of steel materials, different amplitudes of material stress‒strain curve loops are used to specify the level of strain hardening in finite element models.

Findings

The solid and shell elements in ABAQUS element factory can predict local buckling perfectly, and the computation cost of the former is significantly more than the latter. However, one of the solid elements can predict plastic deformation accurately if no local buckling emerges. The axial constraint of test setup equipment can cause excessive plastic deformation in comparison to the link plastic rotation capacity. Furthermore, some shear links with middle stiffeners can reach inaccurate high plastic rotations due to lack of defining fracture criteria in finite element models.

Originality/value

In this study, some resources of discrepancies between experimental results and finite element models are mentioned to ensure the reliable use of finite element models.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 January 1992

ZHI‐HUA ZHONG and JAROSLAV MACKERLE

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite

Abstract

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite element method has been widely used to solve contact problems with various grades of complexity. Great progress has been made on both theoretical studies and engineering applications. This paper reviews some of the main developments in contact theories and finite element solution techniques for static contact problems. Classical and variational formulations of the problem are first given and then finite element solution techniques are reviewed. Available constraint methods, friction laws and contact searching algorithms are also briefly described. At the end of the paper, a bibliography is included, listing about seven hundred papers which are related to static contact problems and have been published in various journals and conference proceedings from 1976.

Details

Engineering Computations, vol. 9 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1996

J. Ascough, H.E. Bez and A.M. Bricis

Uses Newmark’s method to carry out a time‐stepping finite element analysis to predict the behaviour of a cloth garment as it falls from an initial horizontal position to a final…

Abstract

Uses Newmark’s method to carry out a time‐stepping finite element analysis to predict the behaviour of a cloth garment as it falls from an initial horizontal position to a final position draped around a human body form. Bases the finite element model on a simple beam element, in order to minimize the computational time. Accounts for large displacement behaviour by including the element geometric stiffness. Bases the body form on anthropomorphic data produced by a shadow scanner. Enlists a novel scheme to model the contact between the cloth and the underlying body form. Uses the finite element model to provide data for an animated display and finds that it produces sufficiently realistic results for the garment designer’s purposes.

Details

International Journal of Clothing Science and Technology, vol. 8 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 February 2003

M.G. Cottrell, J. Yu, Z.J. Wei and D.R.J. Owen

In recent years, developments in the field of lightweight armour have been of primary importance to the defence industry. This necessity has led to many organisations adopting…

Abstract

In recent years, developments in the field of lightweight armour have been of primary importance to the defence industry. This necessity has led to many organisations adopting composite armours comprising both the traditional heavy armours and new lighter weight ceramic armours. The numerical modelling of metal based armour systems has been well documented over the years using purely continuum based methods; and also the modelling of brittle systems using discrete element methods, therefore it is the objective of this paper to demonstrate how a coupled finite and discrete element approach, can be used in the further understanding of the quantitative response of ceramic systems when subjected to dynamic loadings using a combination of adaptive continuum techniques and discrete element methods. For the class of problems encountered within the defence industry, numerical modelling has suffered from one principal weakness; for many applications the associated deformed finite element mesh can no longer provide an accurate description of the deformed material, whether this is due to large ductile deformation, or for the case of brittle materials, degradation into multiple bodies. Subsequently, two very different approaches have been developed to combat such deficiencies, namely the use of adaptive remeshing for the ductile type materials and a discrete fracture insertion scheme for the modelling of material degradation. Therefore, one of the primary objectives of this paper is to present examples demonstrating the potential benefits of explicitly coupling adaptive remeshing methods to the technique of discrete fracture insertion in order to provide an adaptive discontinuous solution strategy, which is computationally robust and efficient.

Details

Engineering Computations, vol. 20 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1991

SAID T. GOMAA, MOHAMMED H. BALUCH, HAMDY H. ABDEL‐RAHMAN and AMMAR K. MOHAMMED

A finite element formulation for flexure of isotropic plates based on a recent refined theory is developed. The refined theory incorporates effects of transverse shear, transverse…

Abstract

A finite element formulation for flexure of isotropic plates based on a recent refined theory is developed. The refined theory incorporates effects of transverse shear, transverse normal stress and transverse normal strain. The Galerkin finite element method was used to develop the finite element equations for both plate bending and inplane problems. The performance of the proposed finite element model was evaluated by solving problems of uniformly loaded thick plates with different support conditions. The results of the present formulation are compared with Mindlin/Reissner and elasticity solutions.

Details

Engineering Computations, vol. 8 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 July 2015

Sanka Dilshan Ekanayake, D.S. Liyanapathirana and Chin Jian Leo

EPS geofoam has been widely used in embankment construction, slope stabilisation, retaining walls, bridge approaches and abutments. Nevertheless, the potential of EPS geofoam as…

Abstract

Purpose

EPS geofoam has been widely used in embankment construction, slope stabilisation, retaining walls, bridge approaches and abutments. Nevertheless, the potential of EPS geofoam as an engineering material in geotechnical applications has not been fully realised yet. The purpose of this paper is to present the finite element formulation of a constitutive model based on the hardening plasticity, which has the ability to simulate short-term behaviour of EPS geofoam, to predict the mechanical behaviour of EPS geofoam and it is implemented in the finite element programme ABAQUS.

Design/methodology/approach

Finite element formulation is presented based on the explicit integration scheme.

Findings

The finite element formulation is verified using triaxial test data found in the literature (Wong and Leo, 2006 and Chun et al., 2004) for two varieties of EPS geofoam. Performance of the constitute model is compared with four other models found in the literature and results confirm that the constitutive model used in this study has the ability to simulate the short-term EPS geofoam behaviour with sufficient accuracy.

Research limitations/implications

This research is focused only on the short-term behaviour of EPS geofoam. Experimental studies will be carried out in future to incorporate effects of temperature and creep on the material behaviour.

Practical implications

This formulation will be applicable to finite element analysis of boundary value problems involving EPS geofoam (e.g. application of EPS geofoam in ground vibration isolation, retaining structures as compressible inclusions and stabilisation of slopes).

Originality/value

Finite element analysis of EPS geofoam applications are available in the literature using elastic perfectly plastic constitutive models. However, this is the first paper presenting a finite element application utilising a constitutive model specifically developed for EPS geofoam.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2013

N.N.S. Yapage and D.S. Liyanapathirana

Several constitutive models are available in the literature to describe the mechanical behaviour of cement stabilized soils. However, difficulties in implementing such models

Abstract

Purpose

Several constitutive models are available in the literature to describe the mechanical behaviour of cement stabilized soils. However, difficulties in implementing such models within commercial finite element programs have hindered their application to solve related boundary value problems. Therefore, the aim of this study is to implement a constitutive model, which has the capability to simulate cement stabilized soil behaviour, into the finite element program ABAQUS through the user material subroutine UMAT.

Design/methodology/approach

After a detailed review of existing constitutive models for cement stabilized soils, a model based on the elasto‐plastic theory and the extended critical state concept with an associated flow rule is selected for the finite element implementation. A semi‐implicit integration method (cutting plane algorithm) with a continuum elasto‐plastic modulus and path dependent stress prediction strategy has been used in the implementation. The performance of the new finite element formulation of the constitutive model is verified by simulating triaxial test data using the finite element program with the new implementation and predictions from constitutive equations as well as experimental data.

Findings

The paper provides the implementation procedure of the constitutive model into ABAQUS but this method is useful for the implementation of any other constitutive model into ABAQUS or any other finite element program. Simulated results for the volumetric deformation of cement stabilized soils show that the cement stabilized soils do not obey the associated flow rule at high confining pressures. The parametric study shows that the influence of cementation increases the brittle nature and the bearing capacity of treated clay. In addition the results show that proposed finite element implementation has the ability to illustrate key features of the cement stabilized clay.

Originality/value

This paper presents an implementation of an elasto‐plastic constitutive model, based on the extended critical state concept, for cement stabilized soils into a finite element programme, which has been identified as an important and challenging topic in computational geomechanics. This implementation is useful in solving boundary value problems in geomechanics involving cement stabilized soils, incorporating key characteristics of these soils.

Details

Engineering Computations, vol. 30 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

11 – 20 of over 16000