Search results

1 – 10 of over 7000
Article
Publication date: 28 August 2019

Javad Tashakori, Sara Ansari and Javad Razzaghi

During severe earthquakes, the inelastic energy dissipation of eccentrically braced frame system depends on shear links performance. A finite element model can predict links…

Abstract

Purpose

During severe earthquakes, the inelastic energy dissipation of eccentrically braced frame system depends on shear links performance. A finite element model can predict links behavior appropriately if the factors causing large discrepancies are recognized and modified. The paper aims to discuss this issue.

Design/methodology/approach

In order to achieve this, the present paper discusses the cyclic response of five types of shear links constructed of various steel grades that ranged from 100 to 485 MPa yield strength. Finite element models are verified by experimental results. As these links have substantial differences in strain hardening of steel materials, different amplitudes of material stress‒strain curve loops are used to specify the level of strain hardening in finite element models.

Findings

The solid and shell elements in ABAQUS element factory can predict local buckling perfectly, and the computation cost of the former is significantly more than the latter. However, one of the solid elements can predict plastic deformation accurately if no local buckling emerges. The axial constraint of test setup equipment can cause excessive plastic deformation in comparison to the link plastic rotation capacity. Furthermore, some shear links with middle stiffeners can reach inaccurate high plastic rotations due to lack of defining fracture criteria in finite element models.

Originality/value

In this study, some resources of discrepancies between experimental results and finite element models are mentioned to ensure the reliable use of finite element models.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1131

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 1988

Ahmed K. Noor and Jeanne M. Peters

Error indicators are introduced as part of a simple computational procedure for improving the accuracy of the finite element solutions for plate and shell problems. The procedure…

Abstract

Error indicators are introduced as part of a simple computational procedure for improving the accuracy of the finite element solutions for plate and shell problems. The procedure is based on using an initial (coarse) grid and a refined (enriched) grid, and approximating the solution for the refined grid by a linear combination of a few global approximation vectors (or modes) which are generated by solving two uncoupled sets of equations in the coarse grid unknowns and the additional degrees of freedom of the refined grid. The global approximation vectors serve as error indicators since they provide quantitative pointwise information about the sensitivity of the different response quantities to the approximation used. The three key elements of the computational procedure are: (a) use of mixed finite element models with discontinuous stress resultants at the element interfaces; (b) operator splitting, or additive decomposition of the finite element arrays for the refined grid into the sum of the coarse grid arrays and correction terms (representing the refined grid contributions); and (c) application of a reduction method through successive use of the finite element method and the classical Bubnov—Galerkin technique. The finite element method is first used to generate a few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Bubnov—Galerkin technique. The similarities between the proposed computational procedure and a preconditioned conjugate gradient (PCG) technique are identified and are exploited to generate from the PCG technique pointwise error indicators. The effectiveness of the proposed procedure is demonstrated by means of two numerical examples of an isotropic toroidal shell and a laminated anisotropic cylindrical panel.

Details

Engineering Computations, vol. 5 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 13 November 2009

A.E. Tekkaya and P.A.F. Martins

The purpose of this paper is to provide industrial, education and academic users of computer programs a basic overview of finite elements in metal forming that will enable them to…

1972

Abstract

Purpose

The purpose of this paper is to provide industrial, education and academic users of computer programs a basic overview of finite elements in metal forming that will enable them to recognize the pitfalls of the existing formulations, identify the possible sources of errors and understand the routes for validating their numerical results.

Design/methodology/approach

The methodology draws from the fundamentals of the finite elements, plasticity and material science to aspects of computer implementation, modelling, accuracy, reliability and validation. The approach is illustrated and enriched with selected examples obtained from research and industrial metal forming applications.

Findings

The presentation is a step towards diminishing the gap being formed between developers of the finite element computer programs and the users having the know‐how on the metal forming technology. It is shown that there are easy and efficient ways of refreshing and upgrading the knowledge and skills of the users without resorting to complicated theoretical and numerical topics that go beyond their knowledge and most often are lectured out of metal forming context.

Originality/value

The overall content of the paper is enhancement of previous work in the field of sheet and bulk metal forming, and from experience in lecturing these topics to students in graduate and post‐graduate courses and to specialists of metal forming from industry.

Details

Engineering Computations, vol. 26 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1987

Francisco Medina and Fernando Rosales

The accuracy of finite element discretizations modelling one‐dimensional wave propagation problems is presented. The spurious reflections arising from finite/infinite element

Abstract

The accuracy of finite element discretizations modelling one‐dimensional wave propagation problems is presented. The spurious reflections arising from finite/infinite element discretizations for unbounded domain problems are quantified. The error curves, numerically obtained, yield a criterion for rational mesh design. Formulae for minimum discretization ratios are given.

Details

Engineering Computations, vol. 4 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 September 2018

Muhannad Aldosary, Jinsheng Wang and Chenfeng Li

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in…

Abstract

Purpose

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in engineering practice, arising from such diverse sources as heterogeneity of materials, variability in measurement, lack of data and ambiguity in knowledge. Academia and industries have long been researching for uncertainty quantification (UQ) methods to quantitatively account for the effects of various input uncertainties on the system response. Despite the rich literature of relevant research, UQ is not an easy subject for novice researchers/practitioners, where many different methods and techniques coexist with inconsistent input/output requirements and analysis schemes.

Design/methodology/approach

This confusing status significantly hampers the research progress and practical application of UQ methods in engineering. In the context of engineering analysis, the research efforts of UQ are most focused in two largely separate research fields: structural reliability analysis (SRA) and stochastic finite element method (SFEM). This paper provides a state-of-the-art review of SRA and SFEM, covering both technology and application aspects. Moreover, unlike standard survey papers that focus primarily on description and explanation, a thorough and rigorous comparative study is performed to test all UQ methods reviewed in the paper on a common set of reprehensive examples.

Findings

Over 20 uncertainty quantification methods in the fields of structural reliability analysis and stochastic finite element methods are reviewed and rigorously tested on carefully designed numerical examples. They include FORM/SORM, importance sampling, subset simulation, response surface method, surrogate methods, polynomial chaos expansion, perturbation method, stochastic collocation method, etc. The review and comparison tests comment and conclude not only on accuracy and efficiency of each method but also their applicability in different types of uncertainty propagation problems.

Originality/value

The research fields of structural reliability analysis and stochastic finite element methods have largely been developed separately, although both tackle uncertainty quantification in engineering problems. For the first time, all major uncertainty quantification methods in both fields are reviewed and rigorously tested on a common set of examples. Critical opinions and concluding remarks are drawn from the rigorous comparative study, providing objective evidence-based information for further research and practical applications.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 June 2020

Tiago Oliveira, Wilber Vélez and Artur Portela

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Abstract

Purpose

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Design/methodology/approach

In the local domain, assigned to each node of a discretization, the work theorem establishes an energy relationship between a statically admissible stress field and an independent kinematically admissible strain field. This relationship, derived as a weighted residual weak form, is expressed as an integral local form. Based on the independence of the stress and strain fields, this local form of the work theorem is kinematically formulated with a simple rigid-body displacement to be applied by local meshfree and finite element numerical methods. The main feature of this paper is the use of a linearly integrated local form that implements a quite simple algorithm with no further integration required.

Findings

The reduced integration, performed by this linearly integrated formulation, plays a key role in the behavior of local numerical methods, since it implies a reduction of the nodal stiffness which, in turn, leads to an increase of the solution accuracy and, which is most important, presents no instabilities, unlike nodal integration methods without stabilization. As a consequence of using such a convenient linearly integrated local form, the derived meshfree and finite element numerical methods become fast and accurate, which is a feature of paramount importance, as far as computational efficiency of numerical methods is concerned. Three benchmark problems were analyzed with these techniques, in order to assess the accuracy and efficiency of the new integrated local formulations of meshfree and finite element numerical methods. The results obtained in this work are in perfect agreement with those of the available analytical solutions and, furthermore, outperform the computational efficiency of other methods. Thus, the accuracy and efficiency of the local numerical methods presented in this paper make this a very reliable and robust formulation.

Originality/value

Presentation of a new local mesh-free numerical method. The method, linearly integrated along the boundary of the local domain, implements an algorithm with no further integration required. The method is absolutely reliable, with remarkably-accurate results. The method is quite robust, with extremely-fast computations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 July 2016

Daniel Marcsa and Miklós Kuczmann

The purpose of this paper is to present the importance of model accuracy in closed loop control by the help of parallel finite element model of a voltage-fed solenoid with iron…

Abstract

Purpose

The purpose of this paper is to present the importance of model accuracy in closed loop control by the help of parallel finite element model of a voltage-fed solenoid with iron core.

Design/methodology/approach

The axisymmetric formulation of the domain decomposition-based circuit-coupled finite element method (FEM) is embedded in a closed loop control system. The control parameters for the proportional-integral (PI) controller were estimated using the step response of the analytical, static and dynamic model of the solenoid. The controller measures the error of the output of the model after each time step and controls the applied voltage to reach the steady state as fast as possible.

Findings

The results of the closed loop system simulation show why the model accuracy is important in the stage of the controller design. The FEM offers higher accuracy that the analytic model attained with magnetic circuit theory, because the inductance and resistance variation already take into account in the numerical calculation. Furthermore, parallel FEM incorporating domain decomposition to reduce the increased computation time.

Originality/value

A closed loop control with PI controllers is applied for a voltage driven finite element model. The high computation time of the numerical model in the control loop is decreased by the finite element tearing and interconnecting method with direct and iterative solver.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 7000