Search results

1 – 10 of over 3000
Article
Publication date: 18 October 2022

João Henriques, José Xavier and António Andrade-Campos

This work aims to identify the linear elastic orthotropic material paramters of Pinus pinaster Ait. wood, using full-field measurements and an inverse identification strategy…

Abstract

Purpose

This work aims to identify the linear elastic orthotropic material paramters of Pinus pinaster Ait. wood, using full-field measurements and an inverse identification strategy based on the finite element (FE) method updating technique.

Design/methodology/approach

Compression tests are carried out under uniaxial and quasi-static loading conditions on wood specimens oriented on the radial-tangential (RT) plane, with different grain orientations. Full-field displacements and strains are measured using digital image correlation (DIC), which are then used as a reference in the identification procedure. A FE model is implemented assuming plane stress conditions, where wood is modelled as an orthotropic homogeneous material. Based on the numerical results, a synthetic image reconstruction scheme is implemented to synthetically deform the reference experimental image, which is then processed by DIC and further compared to the experimental results.

Findings

The results for both approaches were similar when both specimen configurations were used in a single run. However, when using the DIC-based FEMU approach with the on-axis configuration, the identified modulus of elasticity in the tangential direction and shear modulus are closer to the reference values.

Originality/value

This approach ensures a fair comparison between both sets of data since the full-field strain maps are obtained through the same filter and therefore have the same strain formulation, spatial resolution and data filtering. Firstly, the identification is performed using a single configuration, either the on-axis or the off-axis specimen. Secondly, the identification is carried out by merging data from both on-axis and off-axis configurations.

Details

International Journal of Structural Integrity, vol. 14 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 December 1997

Y.S. Kang and D.Y. Yang

Applies an updated Lagrangian finite element analysis with automatic remeshing scheme to three‐dimensional hot extrusion through landless square dies. The remeshing procedure is…

Abstract

Applies an updated Lagrangian finite element analysis with automatic remeshing scheme to three‐dimensional hot extrusion through landless square dies. The remeshing procedure is composed mainly with decision for remeshing, transfer of state variables and mesh generation. The procedure is carried out fully automatically. In the procedure, it is difficult to generate the mesh automatically, considering the physical characteristics. Accomplishes mesh generation by introducing the modular concept. The mesh generated by the modular concept has advantages, especially for three‐dimensional problems, such as economic computational time and consideration of physical characteristics. Classes the profiles of orifice into two cases; and develops the orifice adaptive module for each case and then carries out numerical examples by using the orifice adaptive modules.

Details

Engineering Computations, vol. 14 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1992

R. BARBOSA and J. GHABOUSSI

A numerical technique is described for the analysis of multiple interacting deformable bodies undergoing large displacements and rotations. Each body is considered an individual…

Abstract

A numerical technique is described for the analysis of multiple interacting deformable bodies undergoing large displacements and rotations. Each body is considered an individual discrete unit, which is idealized by a finite element model. Discrete finite element models interact with their surroundings through contact stresses, which are continually updated as the elements move and deform. The method of analysis consists of a finite element formulation based on a generalized explicit updated Lagrangian method. This formulation is a general finite element formulation, that permits the large deformation analysis of both continuum and discontinuum systems. Different validations of the proposed method of analysis, including cases that involve very large rotations, as well as some examples that demonstrate the application of the discrete finite element method to problems in rock mechanics are presented and discussed in the paper.

Details

Engineering Computations, vol. 9 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 July 2007

N. Touat, M. Pyrz and S. Rechak

This paper seeks to present a new solution algorithm for updating of finite element models in structural dynamics. A random search method is applied to improving the correlation…

Abstract

Purpose

This paper seeks to present a new solution algorithm for updating of finite element models in structural dynamics. A random search method is applied to improving the correlation between the numerical simulation and the measured experimental data.

Design/methodology/approach

Dynamic finite element model updating may be considered as an optimization process. It is solved using modified accelerated random search (MARS) algorithm. The effectiveness of the approach is first tested on benchmark problems. Next, several objective function formulations for dynamic model updating in modal and frequency domains are investigated for numerically simulated vibrating beam. Finally, the algorithm is applied to a real beam‐like structure using measured modal data.

Findings

The MARS algorithm is able to provide very good results in a reduced time even for hard optimization problems. It behaves very well also for the FE dynamic model updating, highly coupled problems. The efficient updating criterion has been proposed and the approach has been validated experimentally.

Research limitations/implications

The method is supposed to be time consuming for large size or complicated objective function problems but the choice of optimization parameters can accelerate the convergence.

Practical implications

The MARS algorithm can be applied to model updating in civil and mechanical engineering.

Originality/value

This paper is the first to apply the MARS algorithm to the problem of FE model updating in dynamics and enables one to obtain very good results. Efficient criteria for model updating have been proposed.

Details

Engineering Computations, vol. 24 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 December 2020

Alia Al-Ghosoun, Ashraf S. Osman and Mohammed Seaid

The purpose of this study is twofold: first, to derive a consistent model free-surface runup flow problems over deformable beds. The authors couple the nonlinear one-dimensional…

Abstract

Purpose

The purpose of this study is twofold: first, to derive a consistent model free-surface runup flow problems over deformable beds. The authors couple the nonlinear one-dimensional shallow water equations, including friction terms for the water free-surface and the two-dimensional second-order solid elastostatic equations for the bed deformation. Second, to develop a robust hybrid finite element/finite volume method for solving free-surface runup flow problems over deformable beds. The authors combine the finite volume for free-surface flows and the finite element method for bed elasticity.

Design/methodology/approach

The authors propose a new model for wave runup by static deformation on seabeds. The model consists of the depth-averaged shallow water system for the water free-surface coupled to the second-order elastostatic formulation for the bed deformation. At the interface between the water flow and the seabed, transfer conditions are implemented. Here, hydrostatic pressure and friction forces are considered for the elastostatic equations, whereas bathymetric forces are accounted for in the shallow water equations. As numerical solvers, the authors propose a well-balanced finite volume method for the flow system and a stabilized finite element method for elastostatics.

Findings

The developed coupled depth-averaged shallow water system and second-order solid elastostatic system is well suited for modeling wave runup by deformation on seabeds. The derived coupling conditions at the interface between the water flow and the bed topography resolve well the condition transfer between the two systems. The proposed hybrid finite volume element method is accurate and efficient for this class of models. The novel technique used for wet/dry treatment accurately captures the moving fronts in the computational domain without generating nonphysical oscillations. The presented numerical results demonstrate the high performance of the proposed methods.

Originality/value

Enhancing modeling and computations for wave runup problems is at an early stage in the literature, and it is a new and exciting area of research. To the best of our knowledge, solving wave runup problems by static deformation on seabeds using a hybrid finite volume element method is presented for the first time. The results of this research study, and the research methodologies, will have an important influence on a range of other scientists carrying out research in related fields.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 September 2016

Bimo Prananta, Toni Kanakis, Jos Vankan and Rien van Houten

The present paper aims to describe the model updating of a small aircraft dynamic finite element model (FEM) to improve its agreement with ground vibration test (GVT) data.

Abstract

Purpose

The present paper aims to describe the model updating of a small aircraft dynamic finite element model (FEM) to improve its agreement with ground vibration test (GVT) data.

Design/methodology/approach

An automatic updating method using an optimization procedure is carried out. Instead of using dedicated updating tools, the procedure is implemented using standard MSC/NASTRAN because of wide availability of the software in small aircraft industries. The objective function is defined to minimize the differences in the natural frequency and the differences in the mode shape between the analytical model and the GVT data. Provision has been made to include the quantification of confidence in both the GVT data and in the initial model. Parameter grouping is carried out to reduce the number of design parameters during the optimization process.

Findings

The optimization module of standard finite element (FE) software can be effectively used to reduce the differences between the GVT and the FEM in terms of frequency and mode shape satisfactorily. The strategy to define the objective function based on minimizing the mode shape error can reduce the improvement in the frequency error. The required user interference can be kept low.

Originality/value

The most important contribution of the present paper concerns the combination of strategies to define the objective function and selection of the parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 May 2022

Mingwei Hu, Hongwei Sun, Liangchuang Liao and Jiajian He

The purpose of this paper is to introduce a method for stiffness modeling, identification and updating of collaborative robots (cobots). This method operates in real-time and with…

Abstract

Purpose

The purpose of this paper is to introduce a method for stiffness modeling, identification and updating of collaborative robots (cobots). This method operates in real-time and with high precision and can eliminate the modeling error between the actual stiffness model and the theoretical stiffness model.

Design/methodology/approach

To simultaneously ensure the computational efficiency and modeling accuracy of the stiffness model, this method introduces the finite element substructure method (FESM) into the virtual joint method (VJM). The stiffness model of the cobots is built by integrating several 6-degree of freedom virtual joints that represent the elastic deformation of the cobot modules, and the stiffness matrices of these modules can be identified and obtained by the FESM. A model-updating method is proposed to identify stiffness influence coefficients, which can eliminate the modeling error between the actual prototype model and the theoretical finite element model.

Findings

The average relative error and the cycle time of the proposed method are approximately 6.14% and 1.31 ms, respectively. Compared with other stiffness modeling methods, this method not only has high modeling accuracy in high dexterity poses but also in low dexterity poses.

Originality/value

A hybrid stiffness modeling method is introduced to integrate the modeling accuracy of the FESM into the VJM. Stiffness influence coefficients are proposed to eliminate the modeling error between the theoretical and actual stiffness models.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 July 2020

Lorena Leocádio Gomes, Felicio Bruzzi Barros, Samuel Silva Penna and Roque Luiz da Silva Pitangueira

The purpose of this paper is to evaluate the capabilities of the generalized finite element method (GFEM) under the context of the geometrically nonlinear analysis. The effect of…

Abstract

Purpose

The purpose of this paper is to evaluate the capabilities of the generalized finite element method (GFEM) under the context of the geometrically nonlinear analysis. The effect of large displacements and deformations, typical of such analysis, induces a significant distortion of the element mesh, penalizing the quality of the standard finite element method approximation. The main concern here is to identify how the enrichment strategy from GFEM, that usually makes this method less susceptible to the mesh distortion, may be used under the total and updated Lagrangian formulations.

Design/methodology/approach

An existing computational environment that allows linear and nonlinear analysis, has been used to implement the analysis with geometric nonlinearity by GFEM, using different polynomial enrichments.

Findings

The geometrically nonlinear analysis using total and updated Lagrangian formulations are considered in GFEM. Classical problems are numerically simulated and the accuracy and robustness of the GFEM are highlighted.

Originality/value

This study shows a novel study about GFEM analysis using a complete polynomial space to enrich the approximation of the geometrically nonlinear analysis adopting the total and updated Lagrangian formulations. This strategy guarantees the good precision of the analysis for higher level of mesh distortion in the case of the total Lagrangian formulation. On the other hand, in the updated Lagrangian approach, the need of updating the degrees of freedom during the incremental and iterative solution are for the first time identified and discussed here.

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1443

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000