Search results

21 – 30 of over 3000
Article
Publication date: 1 April 1983

Y. KAGAWA, T. YAMABUCHI and S. KITAGAMI

The boundary element method is a useful method for the analysis of field problems involving unbounded regions. Therefore, the method can be used advantageously in combination with…

Abstract

The boundary element method is a useful method for the analysis of field problems involving unbounded regions. Therefore, the method can be used advantageously in combination with the finite element method. This is sometimes called a combination method and it is suitable as a picture‐frame technique. Although this technique attains good accuracy, the matrix of the discretized equation is not banded, since it is a dense matrix. In this paper, we propose an infinite boundary element which divides the unbounded region radially. By the use of this element, the bandwidth of the discretized system matrix does not increase beyond that of the finite element region and its original matrix structure is maintained. The infinite boundary element can also be applied to homogeneous unbounded field problems, for which the Green's function of the mirror image is difficult to use. To illustrate the validity of the proposed technique, some numerical calculations are demonstrated and the results are compared with those of the usual combination method and the method using the hybrid‐type infinite element.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 2 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 July 2020

Lorena Leocádio Gomes, Felicio Bruzzi Barros, Samuel Silva Penna and Roque Luiz da Silva Pitangueira

The purpose of this paper is to evaluate the capabilities of the generalized finite element method (GFEM) under the context of the geometrically nonlinear analysis. The effect of…

Abstract

Purpose

The purpose of this paper is to evaluate the capabilities of the generalized finite element method (GFEM) under the context of the geometrically nonlinear analysis. The effect of large displacements and deformations, typical of such analysis, induces a significant distortion of the element mesh, penalizing the quality of the standard finite element method approximation. The main concern here is to identify how the enrichment strategy from GFEM, that usually makes this method less susceptible to the mesh distortion, may be used under the total and updated Lagrangian formulations.

Design/methodology/approach

An existing computational environment that allows linear and nonlinear analysis, has been used to implement the analysis with geometric nonlinearity by GFEM, using different polynomial enrichments.

Findings

The geometrically nonlinear analysis using total and updated Lagrangian formulations are considered in GFEM. Classical problems are numerically simulated and the accuracy and robustness of the GFEM are highlighted.

Originality/value

This study shows a novel study about GFEM analysis using a complete polynomial space to enrich the approximation of the geometrically nonlinear analysis adopting the total and updated Lagrangian formulations. This strategy guarantees the good precision of the analysis for higher level of mesh distortion in the case of the total Lagrangian formulation. On the other hand, in the updated Lagrangian approach, the need of updating the degrees of freedom during the incremental and iterative solution are for the first time identified and discussed here.

Article
Publication date: 16 April 2018

Jacek Ptaszny and Marcin Hatłas

The purpose of this paper is to evaluate the efficiency of the fast multipole boundary element method (FMBEM) in the analysis of stress and effective properties of 3D linear…

Abstract

Purpose

The purpose of this paper is to evaluate the efficiency of the fast multipole boundary element method (FMBEM) in the analysis of stress and effective properties of 3D linear elastic structures with cavities. In particular, a comparison between the FMBEM and the finite element method (FEM) is performed in terms of accuracy, model size and computation time.

Design/methodology/approach

The developed FMBEM uses eight-node Serendipity boundary elements with numerical integration based on the adaptive subdivision of elements. Multipole and local expansions and translations involve solid harmonics. The proposed model is used to analyse a solid body with two interacting spherical cavities, and to predict the homogenized response of a porous material under linear displacement boundary condition. The FEM results are generated in commercial codes Ansys and MSC Patran/Nastran, and the results are compared in terms of accuracy, model size and execution time. Analytical solutions available in the literature are also considered.

Findings

FMBEM and FEM approximate the geometry with similar accuracy and provide similar results. However, FMBEM requires a model size that is smaller by an order of magnitude in terms of the number of degrees of freedom. The problems under consideration can be solved by using FMBEM within the time comparable to the FEM with an iterative solver.

Research limitations/implications

The present results are limited to linear elasticity.

Originality/value

This work is a step towards a comprehensive efficiency evaluation of the FMBEM applied to selected problems of micromechanics, by comparison with the commercial FEM codes.

Article
Publication date: 7 November 2016

Yunfei Liu, Jun Lv and Xiaowei Gao

The purpose of this paper is to introduce a new method called simultaneous elimination and back-substitution method (SEBSM) to solve a system of linear equations as a new finite

Abstract

Purpose

The purpose of this paper is to introduce a new method called simultaneous elimination and back-substitution method (SEBSM) to solve a system of linear equations as a new finite element method (FEM) solver.

Design/methodology/approach

In this paper, a new technique assembling the global stiffness matrix will be proposed and meanwhile the direct method SEBSM will be applied to solve the equations formed in FEM.

Findings

The SEBSM solver for FEM with the present assembling technique has distinct advantages in both computational time and memory space occupation over the conventional methods, such as the Gauss elimination and LU decomposition methods.

Originality/value

The developed solver requires less memory space no matter the coefficient matrix is a typical sparse matrix or not, and it is applicable to both symmetric and unsymmetrical linear systems of equations. The processes of assembling matrix and dealing with constraints are straightforward, so it is convenient for coding. Compared to the previous solvers, the proposed solver has favorable universality and good performances.

Details

Engineering Computations, vol. 33 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 November 2021

Mingyang Liu, Guangjun Gao, Huifen Zhu and Chen Jiang

The purpose of this paper is to investigate the feasibility of solving turbulent flows based on smoothed finite element method (S-FEM). Then, the differences between S-FEM and…

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of solving turbulent flows based on smoothed finite element method (S-FEM). Then, the differences between S-FEM and finite element method (FEM) in dealing with turbulent flows are compared.

Design/methodology/approach

The stabilization scheme, the streamline-upwind/Petrov-Galerkin stabilization is coupled with stabilized pressure gradient projection in the fractional step framework. The Reynolds-averaged Navier-Stokes equations with standard k-epsilon model are selected to solve turbulent flows based on S-FEM and FEM. Standard wall functions are applied to predict boundary layer profiles.

Findings

This paper explores a completely new application of S-FEM on turbulent flows. The adopted stabilization scheme presents a good performance on stabilizing the flows, especially for very high Reynolds numbers flows. An advantage of S-FEM is found in applying wall functions comparing with FEM. The differences between S-FEM and FEM have been investigated.

Research limitations/implications

The research in this work is limited to the two-dimensional incompressible turbulent flow.

Practical implications

The verification and validation of a new combination are conducted by several numerical examples. The new combination could be used to deal with more complicated turbulent flows.

Social implications

The applications of the new combination to study basic and complex turbulent flow are also presented, which demonstrates its potential to solve more turbulent flows in nature and engineering.

Originality/value

This work carries out a great extension of S-FEM in simulations of fluid dynamics. The new combination is verified to be very effective in handling turbulent flows. The performances of S-FEM and FEM on turbulent flows were analyzed by several numerical examples. Superior results were found compared with existing results and experiments. Meanwhile, S-FEM has an advantage of accuracy in predicting boundary layer profile.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 June 2019

Shuang Wang, Gedong Jiang, Xuesong Mei, Chuang Zou, Xian Zhang and Hao Zhang

Because of the compact structure, short flexspline (FS) harmonic drive (HD) is increasingly used. The stress calculation of FS is very important in design and optimization of HD…

Abstract

Purpose

Because of the compact structure, short flexspline (FS) harmonic drive (HD) is increasingly used. The stress calculation of FS is very important in design and optimization of HD system. This paper aims to study the stress calculation methods for short FS, based on mechanics analysis and finite element method (FEM).

Design/methodology/approach

A rapid stress calculation method, based on mechanics analysis, is proposed for the short FS of HD. To verify the stress calculation precision of short FS, a complete finite element model of HD is established. The results of stress and deformation of short FS in different lengths are solved by FEM.

Findings

Through the rapid calculation method, the analytical relationship between circumferential stress and length of cylinder was obtained. And the circumferential stress has proportional relation with the reciprocal of squared length. The FEM results verified that the rapid stress calculation method could obtain accurate results.

Research limitations/implications

The rapid mechanics analysis method is practiced to evaluate the strength of FS at the design stage of HD. And the complete model of HD could contribute to improving the accuracy of FEM results.

Originality/value

The rapid calculation method is developed based on mechanics analysis method of cylinder and equivalent additional bending moment model, through which the analytical relationship between circumferential stress and length of cylinder was obtained. The complete three-dimensional finite element model of HD takes the stiffness of bearing into consideration, which can be used in the numerical simulation in the future work to improve the accuracy.

Details

Engineering Computations, vol. 36 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 July 2013

Sascha Duczek and Ulrich Gabbert

Piezoelectric actuators and sensors are an invaluable part of lightweight designs for several reasons. They can either be used in noise cancellation devices as thin‐walled…

Abstract

Purpose

Piezoelectric actuators and sensors are an invaluable part of lightweight designs for several reasons. They can either be used in noise cancellation devices as thin‐walled structures are prone to acoustic emissions, or in shape control approaches to suppress unwanted vibrations. Also in Lamb wave based health monitoring systems piezoelectric patches are applied to excite and to receive ultrasonic waves. The purpose of this paper is to develop a higher order finite element with piezoelectric capabilities in order to simulate smart structures efficiently.

Design/methodology/approach

In the paper the development of a new fully three‐dimensional piezoelectric hexahedral finite element based on the p‐version of the finite element method (FEM) is presented. Hierarchic Legendre polynomials in combination with an anisotropic ansatz space are utilized to derive an electro‐mechanically coupled element. This results in a reduced numerical effort. The suitability of the proposed element is demonstrated using various static and dynamic test examples.

Findings

In the current contribution it is shown that higher order coupled‐field finite elements hold several advantages for smart structure applications. All numerical examples have been found to agree well with previously published results. Furthermore, it is demonstrated that accurate results can be obtained with far fewer degrees of freedom compared to conventional low order finite element approaches. Thus, the proposed finite element can lead to a significant reduction in the overall numerical costs.

Originality/value

To the best of the author's knowledge, no piezoelectric finite element based on the hierarchical‐finiteelementmethod has yet been published in the literature. Thus, the proposed finite element is a step towards a holistic numerical treatment of structural health monitoring (SHM) related problems using p‐version finite elements.

Details

Engineering Computations, vol. 30 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 August 2009

Jani Paavilainen, Jukka Tuhkuri and Arttu Polojärvi

The purpose of this paper is to present a 2D combined finite‐discrete element method (FEM‐DEM) to model the multi‐fracture of beam structures and an application of the method to…

1343

Abstract

Purpose

The purpose of this paper is to present a 2D combined finite‐discrete element method (FEM‐DEM) to model the multi‐fracture of beam structures and an application of the method to an ice‐structure interaction problem.

Design/methodology/approach

In the method, elastic beams and their fracture are modelled according to FEM by using nonlinear Timoshenko beam elements and cohesive crack model. Additionally, the beam elements are used to tie the discrete elements together. The contact forces between the colliding beams are calculated by using the DEM.

Findings

Three numerical examples are given to verify the method. Further, the method is applied to model the failure process of a floating ice beam against an inclined structure. Based on the comparison of the experiments and the simulation, a good agreement between the results is observed.

Originality/value

In the context of combined FEM‐DEM, the two novel features presented in this paper are: the use of Timoshenko finite element beams with damping to calculate internal forces and to combine the discrete elements; and the bending failure by the cohesive crack approach while simultaneously keeping track of the position of the neutral axis of the beam.

Details

Engineering Computations, vol. 26 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 September 2014

Annika Sorg and Manfred Bischoff

The purpose of this paper is to develop a method to model entire structures on a large scale, at the same time taking into account localized non-linear phenomena of the discrete…

Abstract

Purpose

The purpose of this paper is to develop a method to model entire structures on a large scale, at the same time taking into account localized non-linear phenomena of the discrete microstructure of cohesive-frictional materials.

Design/methodology/approach

Finite element (FEM) based continuum methods are generally considered appropriate as long as solutions are smooth. However, when discontinuities like cracks and fragmentation appear and evolve, application of models that take into account (evolving) microstructures may be advantageous. One popular model to simulate behavior of cohesive-frictional materials is the discrete element method (DEM). However, even if the microscale is close to the macroscale, DEMs are computationally expensive and can only be applied to relatively small specimen sizes and time intervals. Hence, a method is desirable that combines efficiency of FEM with accuracy of DEM by adaptively switching from the continuous to the discrete model where necessary.

Findings

An existing method which allows smooth transition between discrete and continuous models is the quasicontinuum method, developed in the field of atomistic simulations. It is taken as a starting point and its concepts are extended to applications in structural mechanics in this paper. The kinematics in the method presented herein is obtained from FEM whereas DEM yields the constitutive behavior. With respect to the constitutive law, three levels of resolution – continuous, intermediate and discrete – are introduced.

Originality/value

The overall concept combines model adaptation with adaptive mesh refinement with the aim to obtain a most efficient and accurate solution.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

21 – 30 of over 3000