Search results

1 – 10 of 21
Open Access
Article
Publication date: 16 February 2022

Karl Hollaus, Susanne Bauer, Michael Leumüller and Christian Türk

Cables are ubiquitous in electronic-based systems. Electromagnetic emission of cables and crosstalk between wires is an important issue in electromagnetic compatibility and is to…

Abstract

Purpose

Cables are ubiquitous in electronic-based systems. Electromagnetic emission of cables and crosstalk between wires is an important issue in electromagnetic compatibility and is to be minimized in the design phase. To facilitate the design, models of different complexity and accuracy, for instance, circuit models or finite element (FE) simulations, are used. The purpose of this study is to compare transmission line parameters obtained by measurements and simulations.

Design/methodology/approach

Transmission line parameters were determined by means of measurements in the frequency and time domain and by FE simulations in the frequency domain and compared. Finally, a Spice simulation with lumped elements was performed.

Findings

The determination of the effective permittivity of insulated wires seems to be a key issue in comparing measurements and simulations.

Originality/value

A space decomposition technique for a guided wave on an infinite configuration with constant cross-section has been introduced, where an analytic representation in the direction of propagation is used, and the transversal fields are approximated by FEs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 2 July 2020

Javed Ahmad Bhat and Naresh Kumar Sharma

Among the many factors fueling the inflationary tendencies in an economy such as monetary shocks, structural shocks, demand shocks, external shocks and demographic changes, the…

2154

Abstract

Purpose

Among the many factors fueling the inflationary tendencies in an economy such as monetary shocks, structural shocks, demand shocks, external shocks and demographic changes, the issue of inflation (INF) has also been found to be related to fiscal policy decisions of the government. The purpose of this study is to investigate the inflationary tendencies in India particularly from the fiscal point of view. The study also examines the influence of other potential determinants such as output growth rate, interest rate, trade-openness (TO) and oil price inflation (OPI).

Design/methodology/approach

To examine the dynamic nature of association between fiscal deficit and inflation, the study applies the Toda-Yamamoto (1995) test and Breitung and Candelon (2006) test to investigate the nature of causality in time and frequency domain frameworks. In addition, to scrutinize the possibility of a long-run association, that too from an asymmetric point of view, the study applies a Non-linear Autoregressive Distributed lag model (NARDL) given by Shin et al. (2014). Finally, non-linear cumulative dynamic multipliers are used to trace the traverse between disequilibrium position of short-run and subsequent long-run equilibrium of the system.

Findings

The authors found a unidirectional causality from fiscal deficit to inflation in case of time domain analysis and no feedback causality is reported. However, in case of frequency domain design, causality from fiscal deficit to inflation is found at low frequencies only, i.e. no short-run causality is established and hence dynamic nature of the relationship between the two variables is vindicated. Using NARDL model, the results document the existence of an asymmetric long-run direct association between fiscal deficit and inflation. However, an increase in deficit is found to be more inflationary and a decrease affects the inflation with a lower magnitude. The asymmetric impact of fiscal deficit on inflation can be explained through the existence of liquidity constraints, consumption-investment downward inflexibility and the downward price stickiness. Contractionary monetary policy action is found to be more effective than an expansionary one, signifying the asymmetric influence of monetary policy actions on the inflation of India. Similarly, in a supply-constrained economy with downward price rigidity, the authors found an asymmetric impact of output growth and output decline on inflation. As regard to the trade-openness, although an asymmetry is reported, the signs refute the validation of Romer (1993) hypothesis. Finally, the impact of oil price inflation on the inflationary pressures is according to theory but the coefficients are devoid of statistical significance.

Practical implications

These results indicate some important policy recommendations. Fiscal consolidation strategy should be executed in an appreciable manner to achieve the sound fiscal health and lower INF. The disciplined fiscal strategy would also be imperative for an effective monetary policy. Monetary authorities should possess noticeable credibility to manage the macroeconomic system and policy stances should be implemented according to requirements of the economy. Growth in output should be encouraged to have two-fold benefits to the economy – reducing INF on the one hand and fiscal deficits on the other.

Originality/value

The study contributes to the existing literature in the following ways. First, taking note of dynamic nature of the relationship between these two variables, the study examined the deficit INF nexus in a dynamic and asymmetric framework. The novelty of the study is ensured by the very nature of it is the first study in case of India to identify the fiscal INF in an asymmetric configuration. The authors applied a NARDL model, given by Shin et al. (2014) to examine the existence of any cointegrating relationship in an asymmetric paradigm. Second, the nature of causality between fiscal deficit and INF has been examined in a time domain and FD framework to portray precisely the casual interactions between these two variables in the short-run and long run. The study will, therefore, enrich the existing literature along the asymmetric lines.

Details

Journal of Economics, Finance and Administrative Science, vol. 25 no. 50
Type: Research Article
ISSN: 2077-1886

Keywords

Open Access
Article
Publication date: 16 March 2022

Michael Leumüller, Karl Hollaus and Joachim Schöberl

This paper aims to consider a multiscale electromagnetic wave problem for a housing with a ventilation grill. Using the standard finite element method to discretise the apertures…

Abstract

Purpose

This paper aims to consider a multiscale electromagnetic wave problem for a housing with a ventilation grill. Using the standard finite element method to discretise the apertures leads to an unduly large number of unknowns. An efficient approach to simulate the multiple scales is introduced. The aim is to significantly reduce the computational costs.

Design/methodology/approach

A domain decomposition technique with upscaling is applied to cope with the different scales. The idea is to split the domain of computation into an exterior domain and multiple non-overlapping sub-domains. Each sub-domain represents a single aperture and uses the same finite element mesh. The identical mesh of the sub-domains is efficiently exploited by the hybrid discontinuous Galerkin method and a Schur complement which facilitates the transition from fine meshes in the sub-domains to a coarse mesh in the exterior domain. A coarse skeleton grid is used on the interface between the exterior domain and the individual sub-domains to avoid large dense blocks in the finite element discretisation matrix.

Findings

Applying a Schur complement to the identical discretisation of the sub-domains leads to a method that scales very well with respect to the number of apertures.

Originality/value

The error compared to the standard finite element method is negligible and the computational costs are significantly reduced.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 8 November 2023

Armando Di Meglio, Nicola Massarotti, Samuel Rolland and Perumal Nithiarasu

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical…

Abstract

Purpose

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between pressure gradient and velocity.

Design/methodology/approach

The numerical correlations origin from computational fluid dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the porous media are taken into account. More specifically, for a specific frequency and stack porosity, the oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency domain (Fast Fourier Transform analysis).

Findings

It emerges that the viscous component of pressure drop follows a quadratic trend with respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes. Furthermore, the non-linear coefficient b of the correlation ax + bx2 (related to the Forchheimer coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical discontinuities are more pronounced.

Originality/value

The main novelty of this work is that, for the first time, non-linear losses of a parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied in the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 13 June 2023

Marissa Condon

The purpose of the paper is the simulation of nonuniform transmission lines.

Abstract

Purpose

The purpose of the paper is the simulation of nonuniform transmission lines.

Design/methodology/approach

The method involves a Magnus expansion and a numerical Laplace transform. The method involves a judicious arrangement of the governing equations so as to enable efficient simulation.

Findings

The results confirm an effective and efficient numerical solver for inclusion of nonuniform transmission lines in circuit simulation.

Originality/value

The work combines a Magnus expansion and numerical Laplace transform algorithm in a novel manner and applies the resultant algorithm for the effective and efficient simulation of nonuniform transmission lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 28 August 2019

Pierre Rostan and Alexandra Rostan

The purpose of this paper is to estimate the years the European Muslim population will be majority among 30 European countries.

87727

Abstract

Purpose

The purpose of this paper is to estimate the years the European Muslim population will be majority among 30 European countries.

Design/methodology/approach

The methodology/approach is to forecast the population of 30 European countries with wavelet analysis combined with the Burg model which fits a pth order autoregressive model to the input signal by minimizing (least squares) the forward and backward prediction errors while constraining the autoregressive parameters to satisfy the Levinson–Durbin recursion, then relies on an infinite impulse response prediction error filter. Three scenarios are considered: the zero-migration scenario where the authors assume that the Muslim population has a higher fertility (one child more per woman, on average) than other Europeans, mirroring a global pattern; a 2017 migration scenario: to the Muslim population obtained in the zero-migration scenario, the authors add a continuous flow of migrants every year based on year 2017; the mid-point migration scenario is obtained by averaging the data of the two previous scenarios.

Findings

Among three scenarios, the most likely mid-point migration scenario identifies 13 countries where the Muslim population will be majority between years 2085 and 2215: Cyprus (in year 2085), Sweden (2125), France (2135), Greece (2135), Belgium (2140), Bulgaria (2140), Italy (2175), Luxembourg (2175), the UK (2180), Slovenia (2190), Switzerland (2195), Ireland (2200) and Lithuania (2215). The 17 remaining countries will never reach majority in the next 200 years.

Originality/value

The growing Muslim population will change the face of Europe socially, politically and economically. This paper will provide a better insight and understanding of Muslim population dynamics to European governments, policymakers, as well as social and economic planners.

Details

PSU Research Review, vol. 3 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Book part
Publication date: 18 July 2022

Christian Versloot, Maria Iacob and Klaas Sikkel

Utility strikes have spawned companies specializing in providing a priori analyses of the underground. Geophysical techniques such as Ground Penetrating Radar (GPR) are harnessed…

Abstract

Utility strikes have spawned companies specializing in providing a priori analyses of the underground. Geophysical techniques such as Ground Penetrating Radar (GPR) are harnessed for this purpose. However, analyzing GPR data is labour-intensive and repetitive. It may therefore be worthwhile to amplify this process by means of Machine Learning (ML). In this work, harnessing the ADR design science methodology, an Intelligence Amplification (IA) system is designed that uses ML for decision-making with respect to utility material type. It is driven by three novel classes of Convolutional Neural Networks (CNNs) trained for this purpose, which yield accuracies of 81.5% with outliers of 86%. The tool is grounded in the available literature on IA, ML and GPR and is embedded into a generic analysis process. Early validation activities confirm its business value.

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 17 May 2022

Chongyi Chang, Yuanwu Cai, Bo Chen, Qiuze Li and Pengfei Lin

In service, the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration, leading to severe damage on the wheelset…

Abstract

Purpose

In service, the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration, leading to severe damage on the wheelset, rail and track structure. This study aims to analyze characteristics and dynamic impact law of wheel and rail caused by wheel flat of high-speed trains.

Design/methodology/approach

A full-scale high-speed wheel/rail interface test rig was used for the test of the dynamic impact of wheel/rail caused by wheel flat of high-speed train. With wheel flats of different lengths, widths and depths manually set around the rolling circle of the wheel tread, and wheel/rail dynamic impact tests to the flats in the speed range of 0–400 km/h on the rig were conducted.

Findings

As the speed goes up, the flat induced the maximum of the wheel/rail dynamic impact force increases rapidly before it reaches its limit at the speed of around 35 km/h. It then goes down gradually as the speed continues to grow. The impact of flat wheel on rail leads to 100–500 Hz middle-frequency vibration, and around 2,000 Hz and 6,000 Hz high-frequency vibration. In case of any wheel flat found during operation, the train speed shall be controlled according to the status of the flat and avoid the running speed of 20 km/h–80 km/h as much as possible.

Originality/value

The research can provide a new method to obtain the dynamic impact of wheel/rail caused by wheel flat by a full-scale high-speed wheel/rail interface test rig. The relations among the flat size, the running speed and the dynamic impact are hopefully of reference to the building of speed limits for HSR wheel flat of different degrees.

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of 21