Search results

1 – 10 of 622
Open Access
Article
Publication date: 4 January 2021

Stefano Costa and Eugenio Costamagna

This paper aims to solve inhomogeneous dielectric problems by matching boundary conditions at the interfaces among homogeneous subdomains. The capabilities of Hilbert transform…

Abstract

Purpose

This paper aims to solve inhomogeneous dielectric problems by matching boundary conditions at the interfaces among homogeneous subdomains. The capabilities of Hilbert transform computations are deeply investigated in the case of limited numbers of samples, and a refined model is presented by means of investigating accuracies in a case study with three subdomains.

Design/methodology/approach

The accuracies, refined by Richardson extrapolation to zero error, are compared to finite element (FEM) and finite difference methods. The boundary matching procedures can be easily applied to the results of a previous Schwarz–Christoffel (SC) conformal mapping stage in SC + BC procedures, to cope with field singularities or with open boundary problems.

Findings

The proposed field computations are of general interest both for electrostatic and magnetostatic field analysis and optimization. They can be useful as comparison tools for FEM results or when severe field singularities can impair the accuracies of other methods.

Research limitations/implications

This static field methodology, of course, can be used to analyse transverse electro magnetic (TEM) or quasi-TEM propagation modes. It is possible that, in some case, these may make a contribution to the analysis of axis symmetrical problems.

Originality/value

The most relevant result is the possible introduction of SC + BC computations as a standard tool for solving inhomogeneous dielectric field problems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 5 September 2018

Shang-Han Gao and Sheng-Long Nong

This paper aims to analyze the pressure distribution of rectangular aerostatic thrust bearing with a single air supply inlet using the complex potential theory and conformal…

Abstract

Purpose

This paper aims to analyze the pressure distribution of rectangular aerostatic thrust bearing with a single air supply inlet using the complex potential theory and conformal mapping.

Design/methodology/approach

The Möbius transform is used to map the interior of a rectangle onto the interior of a unit circle, from which the pressure distribution and load carrying capacity are obtained. The calculation results are verified by finite difference method.

Findings

The constructed Möbius formula is very effective for the performance characteristics researches for the rectangular thrust bearing with a single air supply inlet. In addition, it is also noted that to obtain the optimized load carrying capacity, the square thrust bearing can be adopted.

Originality/value

The Möbius transform is found suitable to describe the pressure distribution of the rectangular thrust bearing with a single air supply inlet.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 8 June 2023

Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor and Božidar Šarler

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Abstract

Purpose

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Design/methodology/approach

A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case.

Findings

The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented.

Originality/value

A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Content available

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 3
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 1 June 1998

65

Abstract

Details

Industrial Lubrication and Tribology, vol. 50 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 1 December 1999

Karen Savage and D.M. Hutton

92

Abstract

Details

Kybernetes, vol. 28 no. 9
Type: Research Article
ISSN: 0368-492X

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

215

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 5 March 2010

Chris A. Rodopoulos

526

Abstract

Details

International Journal of Structural Integrity, vol. 1 no. 1
Type: Research Article
ISSN: 1757-9864

Open Access
Article
Publication date: 8 January 2020

Guillermo A. Riveros, Felipe J. Acosta, Reena R. Patel and Wayne Hodo

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The…

1049

Abstract

Purpose

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The exterior tissue of the rostrum covers the cartilage that surrounds the bones forming interlocking star shaped bones.

Design/methodology/approach

The aim of this work is to assess the mechanical behavior of four finite element models varying the type of formulation as follows: linear-reduced integration, linear-full integration, quadratic-reduced integration and quadratic-full integration. The paper also presents the load transfer mechanisms of the bone structure of the rostrum. The base material used in the study was steel with elastic–plastic behavior as a homogeneous material before applying materials properties that represents the behavior of bones, cartilages and tissues.

Findings

Conclusions are based on comparison among the four models. There is no significant difference between integration orders for similar type of elements. Quadratic-reduced integration formulation resulted in lower structural stiffness compared with linear formulation as seen by higher displacements and stresses than using linearly formulated elements. It is concluded that second-order elements with reduced integration are the alternative to analyze biological structures as they can better adapt to the complex natural contours and can model accurately stress concentrations and distributions without over stiffening their general response.

Originality/value

The use of advanced computational mechanics techniques to analyze the complex geometry and components of the paddlefish rostrum provides a viable avenue to gain fundamental understanding of the proper finite element formulation needed to successfully obtain the system behavior and hot spot locations.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 16 March 2022

Michael Leumüller, Karl Hollaus and Joachim Schöberl

This paper aims to consider a multiscale electromagnetic wave problem for a housing with a ventilation grill. Using the standard finite element method to discretise the apertures…

Abstract

Purpose

This paper aims to consider a multiscale electromagnetic wave problem for a housing with a ventilation grill. Using the standard finite element method to discretise the apertures leads to an unduly large number of unknowns. An efficient approach to simulate the multiple scales is introduced. The aim is to significantly reduce the computational costs.

Design/methodology/approach

A domain decomposition technique with upscaling is applied to cope with the different scales. The idea is to split the domain of computation into an exterior domain and multiple non-overlapping sub-domains. Each sub-domain represents a single aperture and uses the same finite element mesh. The identical mesh of the sub-domains is efficiently exploited by the hybrid discontinuous Galerkin method and a Schur complement which facilitates the transition from fine meshes in the sub-domains to a coarse mesh in the exterior domain. A coarse skeleton grid is used on the interface between the exterior domain and the individual sub-domains to avoid large dense blocks in the finite element discretisation matrix.

Findings

Applying a Schur complement to the identical discretisation of the sub-domains leads to a method that scales very well with respect to the number of apertures.

Originality/value

The error compared to the standard finite element method is negligible and the computational costs are significantly reduced.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 622