Search results

1 – 10 of over 3000
Article
Publication date: 1 May 1995

L. Fourment and J.L. Chenot

The analysis of error estimation is addressed in the framework ofviscoplasticity problems, this is to say, of incompressible andnon‐linear materials. Firstly, Zienkiewicz—Zhu(Z2

Abstract

The analysis of error estimation is addressed in the framework of viscoplasticity problems, this is to say, of incompressible and non‐linear materials. Firstly, Zienkiewicz—Zhu (Z2) type error estimators are studied. They are based on the comparison between the finite element solution and a continuous solution which is computed by smoothing technique. From numerical examples, it is shown that the choice of a finite difference smoothing method (Orkisz’ method) improves the precision and the efficiency of this type of estimator. Then a Δ estimator is introduced. It makes it possible to take into account the fact that the smoothed solution does not verify the balance equations. On the other hand, it leads us to introduce estimators for the velocity error according to the L2 and Lnorms, since in metal forming this error is as important as the energy error. These estimators are applied to an industrial problem of extrusion, demonstrating all the potential of the adaptive remeshing method for forming processes.

Details

Engineering Computations, vol. 12 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 May 2021

J.I. Ramos

The purpose of this paper is to determine both analytically and numerically the existence of smooth, cusped and sharp shock wave solutions to a one-dimensional model of…

Abstract

Purpose

The purpose of this paper is to determine both analytically and numerically the existence of smooth, cusped and sharp shock wave solutions to a one-dimensional model of microfluidic droplet ensembles, water flow in unsaturated flows, infiltration, etc., as functions of the powers of the convection and diffusion fluxes and upstream boundary condition; to study numerically the evolution of the wave for two different initial conditions; and to assess the accuracy of several finite difference methods for the solution of the degenerate, nonlinear, advection--diffusion equation that governs the model.

Design/methodology/approach

The theory of ordinary differential equations and several explicit, finite difference methods that use first- and second-order, accurate upwind, central and compact discretizations for the convection terms are used to determine the analytical solution for steadily propagating waves and the evolution of the wave fronts from hyperbolic tangent and piecewise linear initial conditions to steadily propagating waves, respectively. The amplitude and phase errors of the semi-discrete schemes are determined analytically and the accuracy of the discrete methods is assessed.

Findings

For non-zero upstream boundary conditions, it has been found both analytically and numerically that the shock wave is smooth and its steepness increases as the power of the diffusion term is increased and as the upstream boundary value is decreased. For zero upstream boundary conditions, smooth, cusped and sharp shock waves may be encountered depending on the powers of the convection and diffusion terms. For a linear diffusion flux, the shock wave is smooth, whereas, for a quadratic diffusion flux, the wave exhibits a cusped front whose left spatial derivative decreases as the power of the convection term is increased. For higher nonlinear diffusion fluxes, a sharp shock wave is observed. The wave speed decreases as the powers of both the convection and the diffusion terms are increased. The evolution of the solution from hyperbolic tangent and piecewise linear initial conditions shows that the wave back adapts rapidly to its final steady value, whereas the wave front takes much longer, especially for piecewise linear initial conditions, but the steady wave profile and speed are independent of the initial conditions. It is also shown that discretization of the nonlinear diffusion flux plays a more important role in the accuracy of first- and second-order upwind discretizations of the convection term than either a conservative or a non-conservative discretization of the latter. Second-order upwind and compact discretizations of the convection terms are shown to exhibit oscillations at the foot of the wave’s front where the solution is nil but its left spatial derivative is largest. The results obtained with a conservative, centered second--order accurate finite difference method are found to be in good agreement with those of the second-order accurate, central-upwind Kurganov--Tadmor method which is a non-oscillatory high-resolution shock-capturing procedure, but differ greatly from those obtained with a non-conservative, centered, second-order accurate scheme, where the gradients are largest.

Originality/value

A new, one-dimensional model for microfluidic droplet transport, water flow in unsaturated flows, infiltration, etc., that includes high-order convection fluxes and degenerate diffusion, is proposed and studied both analytically and numerically. Its smooth, cusped and sharp shock wave solutions have been determined analytically as functions of the powers of the nonlinear convection and diffusion fluxes and the boundary conditions. These solutions are used to assess the accuracy of several finite difference methods that use different orders of accuracy in space, and different discretizations of the convection and diffusion fluxes, and can be used to assess the accuracy of other numerical procedures for one-dimensional, degenerate, convection--diffusion equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1131

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1986

E. Hinton and H.C. Huang

Finite elements based on Mindlin plate theory are used to study the distribution of shear forces and twisting moments on the boundaries of plates with various support conditons…

Abstract

Finite elements based on Mindlin plate theory are used to study the distribution of shear forces and twisting moments on the boundaries of plates with various support conditons and thickness‐to‐span ratios. Differences between results obtained using Mindlin and Kirchhoff plate theories are highlighted. Potential difficulties in the interpretation of results obtained from finite element analysis are discussed and appropriate shear force sampling procedures are reviewed. The present work is a pilot study for a larger project with the basic aim of providing engineers with an unambiguous method for obtaining stress resultants in Mindlin plate analysis. Some examples are presented which illustrate the excellent results which may be obtained with judicious mesh division even in regions with steep gradients of the stress resultants near plate corners. These examples also demonstrate some of the difficulties facing engineers who have to try to interpret finite element results for plates.

Details

Engineering Computations, vol. 3 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 25 February 2014

George A. Gravvanis and Christos K. Filelis-Papadopoulos

The purpose of this paper is to propose multigrid methods in conjunction with explicit approximate inverses with various cycles strategies and comparison with the other smoothers…

Abstract

Purpose

The purpose of this paper is to propose multigrid methods in conjunction with explicit approximate inverses with various cycles strategies and comparison with the other smoothers.

Design/methodology/approach

The main motive for the derivation of the various multigrid schemes lies in the efficiency of the multigrid methods as well as the explicit approximate inverses. The combination of the various multigrid cycles with the explicit approximate inverses as smoothers in conjunction with the dynamic over/under relaxation (DOUR) algorithm results in efficient schemes for solving large sparse linear systems derived from the discretization of partial differential equations (PDE).

Findings

Application of the proposed multigrid methods on two-dimensional boundary value problems is discussed and numerical results are given concerning the convergence behavior and the convergence factors. The results are comparatively better than the V-cycle multigrid schemes presented in a recent report (Filelis-Papadopoulos and Gravvanis).

Research limitations/implications

The limitations of the proposed scheme lie in the fact that the explicit finite difference approximate inverse matrix used as smoother in the multigrid method is a preconditioner for specific sparsity pattern. Further research is carried out in order to derive a generic explicit approximate inverse for any type of sparsity pattern.

Originality/value

A novel smoother for the geometric multigrid method is proposed, based on optimized banded approximate inverse matrix preconditioner, the Richardson method in conjunction with the DOUR scheme, for solving large sparse linear systems derived from finite difference discretization of PDEs. Moreover, the applicability and convergence behavior of the proposed scheme is examined based on various cycles and comparative results are given against the damped Jacobi smoother.

Article
Publication date: 1 February 2000

A.N. Pavlov, S.S. Sazhin, R.P. Fedorenko and M.R. Heikal

Detailed results of numerical calculations of transient, 2D incompressible flow around and in the wake of a square prism at Re = 100, 200 and 500 are presented. An implicit finite

Abstract

Detailed results of numerical calculations of transient, 2D incompressible flow around and in the wake of a square prism at Re = 100, 200 and 500 are presented. An implicit finitedifference operator‐splitting method, a version of the known SIMPLEC‐like method on a staggered grid, is described. Appropriate theoretical results are presented. The method has second‐order accuracy in space, conserving mass, momentum and kinetic energy. A new modification of the multigrid method is employed to solve the elliptic pressure problem. Calculations are performed on a sequence of spatial grids with up to 401 × 321 grid points, at sequentially halved time steps to ensure grid‐independent results. Three types of flow are shown to exist at Re = 500: a steady‐state unstable flow and two which are transient, fully periodic and asymmetric about the centre line but mirror symmetric to each other. Discrete frequency spectra of drag and lift coefficients are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2021

Daniele Cinque, Jose Viriato Araujo dos Santos, Stefano Gabriele, Sonia Marfia and Hernâni Lopes

The purpose of this paper is to present a study on the application of four damage factors to several single and multiple damage scenarios of aluminium beams. Each one of these…

Abstract

Purpose

The purpose of this paper is to present a study on the application of four damage factors to several single and multiple damage scenarios of aluminium beams. Each one of these damage factors is defined by the information given by modal curvatures of the beams.

Design/methodology/approach

The methodology consisted of a first experimental stage in which the modal rotations were measured with shearography and a subsequent numerical analysis in order to obtain the modal curvatures. To this end, three finite difference formulae were applied. The modal curvatures were then used to calculate the damage factors.

Findings

It was found that the profile of the damage factors varies according to the finite difference formula used. In view of the findings, the differences among the damage factors analysed are highlighted and some final recommendations to improve damage identifications via modal curvature-based are presented.

Originality/value

To the best of the authors’ knowledge, the application and comparison of several finite difference formulae and corresponding optimal sampling has not been carried out before. With the proposed approach, it is possible to identify multiple damages, which is still a great challenge. The post-processing of shearography measurements with a numerical method, which is inherently a multidisciplinary approach, is also a substantial improvement upon other type of approaches found in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 May 2000

D.S. Liyanapathirana, A.J. Deeks and M.F. Randolph

In finite element analysis of pile driving, the nodes of the finite element mesh are the most important locations for output stresses. Especially at the pile‐soil interface, it is…

1032

Abstract

In finite element analysis of pile driving, the nodes of the finite element mesh are the most important locations for output stresses. Especially at the pile‐soil interface, it is essential to obtain accurate nodal stresses. Several global and local stress smoothing methods available in the literature were reviewed and examined. Global methods are found to be computationally expensive, so results obtained from several local stress smoothing methods are compared. It is shown that accurate nodal stresses can be obtained by approximating the stress distribution inside four‐element patches by a polynomial with order equal to the order of the shape functions. Equally good results can be obtained by approximating the stress distribution inside each element by a bilinear surface. When a method taking into account both equilibrium and boundary conditions was applied, a set of ill‐conditioned matrices was produced for the four‐element patches. Such methods are therefore not recommended.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1986

Theodore Sussman and Klaus‐Jürgen Bathe

We describe a visual method—stress band plots—for displaying the stress solution within a two‐dimensional finite element mesh. The stress band plots differ from conventional…

163

Abstract

We describe a visual method—stress band plots—for displaying the stress solution within a two‐dimensional finite element mesh. The stress band plots differ from conventional stress contour plots because stress band plots display unaveraged stresses (the stresses are computed directly from the solution variables) and stress discontinuities in the finite element solution are directly displayed. Stress band plots are useful in judging the accuracy of a finite element solution, in the comparison of different finite element solutions and during mesh refinement. These uses are demonstrated in an axisymmetric pressure vessel analysis.

Details

Engineering Computations, vol. 3 no. 3
Type: Research Article
ISSN: 0264-4401

1 – 10 of over 3000