Search results

1 – 10 of 279
Article
Publication date: 19 February 2024

Bassem Assfour, Bassam Abdallah, Hour Krajian, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

The purpose of this study is to investigate the structural, surface roughness and corrosion properties of the zirconium oxide thin films deposited onto SS304 substrates using the…

Abstract

Purpose

The purpose of this study is to investigate the structural, surface roughness and corrosion properties of the zirconium oxide thin films deposited onto SS304 substrates using the direct current (DC) magnetron sputtering technique.

Design/methodology/approach

DC sputtering at different powers – 80, 100 and 120 W – was used to deposit ZrO2 thin films onto different substrates (Si/SS304) without annealing of the substrate. Atomic force microscope (AFM), energy-dispersive X-ray spectroscopy (EDS), Tafel extrapolation and contact angle techniques were applied to investigate the surface roughness, chemical compositions, corrosion behavior and hydrophobicity of these films.

Findings

Results showed that the thickness of the deposited film increased with power increase, while the corrosion current decreased with power increase. AFM images indicated that the surface roughness decreased with an increase in DC power. EDS analysis showed that the thin film has a stoichiometric ZrO2 (Zr:O 1:2) composition with basic uniformity. Water contact angle measurements indicated that the hydrophobicity of the synthesized films decreased with an increase in surface roughness.

Originality/value

DC magnetron sputtering technique is infrequently used to deposition thin films. The obtained thin films showed good hydrophobic and anticorrosion properties. Finally, results are compared with other deposition techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 May 2023

Bassam Abdallah, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical…

41

Abstract

Purpose

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical properties. The aim of this work was depositing NbN thin films on two types of substrates (stainless steel (SS304) and silicon (100)) using plasma technique at varied powers (100–150 W).

Design/methodology/approach

DC magnetron sputtering technique at different powers were used to synthesis NbN films. Film structure was studied using X-ray diffraction (XRD) pattern. Rutherford elastic backscattering and energy dispersive X-ray were used to examine the deposited film composition. The films morphology was studied via atomic force microscopy and scanning electron microscopy images. Corrosion resistance of the three NbN/SS304 films was studied in 0.9% NaCl environment (physiological standard saline).

Findings

All properties could be controlled by the modification of DC power, where the crystallinity of samples was changed and consequently the corrosion and microhardness were modified, which correlated with the power. NbN film deposited at higher power (150 W) has shown better corrosion resistance (0.9% NaCl), which had smaller grain size (smoother) and was thicker.

Originality/value

The NbN films have a preferred orientation (111) matching to cubic structure phase. Corrosion resistance was enhanced for the NbN films compared to SS304 substrates (noncoating). Therefore, NbN films deposited on SS304 substrate could be applied as medicinal tools as well as in mechanical fields.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 April 2024

Jian Sun, Zhanshuai Fan, Yi Yang, Chengzhi Li, Nan Tu, Jian Chen and Hailin Lu

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low…

Abstract

Purpose

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low hardness and strength of the surface of aluminum alloys are the main factors that limit their applications. The purpose of this study is to obtain a composite coating with high hardness and lubricating properties by applying GO–PVA over MAO coating.

Design/methodology/approach

A pulsed bipolar power supply was used as power supply to prepare the micro-arc oxidation (MAO) coating on 6061 aluminum sample. Then a graphene oxide-polyvinyl alcohol (GO–PVA) composite coating was prepared on MAO coating for subsequent experiments. Samples were characterized by Fourier infrared spectroscopy, X-ray diffraction, Raman spectroscopy and thermogravimetric analysis. The friction test is carried out by the relative movement of the copper ball and the aluminum disk on the friction tester.

Findings

Results showed that the friction coefficient of MAO samples was reduced by 80% after treated with GO–PVA composite film.

Originality/value

This research has made a certain contribution to the surface hardness and tribological issues involved in the lightweight design of aluminum alloys.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0427/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 February 2022

Mona Saied, Abeer Reffaee, Shimaa Hamieda, Salwa L. Abd- El- Messieh and Emad S. Shafik

This study aims to get rid of non-degradable polyvinyl chloride (PVC) waste as well as sunflower seed cake (SSC) waste by preparing eco-friendly composites from both in different…

Abstract

Purpose

This study aims to get rid of non-degradable polyvinyl chloride (PVC) waste as well as sunflower seed cake (SSC) waste by preparing eco-friendly composites from both in different proportions to reach good mechanical and insulating properties for antimicrobial and antistatic applications.

Design/methodology/approach

Eco-friendly composite films based on waste polyvinylchloride (WPVC) and SSC of concentrations (0, 10, 20, 30 and 40 Wt.%) were prepared using solution casting method. Further, the effect of sunflower seed oil (SSO) on the biophysical properties of the prepared composites is also investigated. Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscope, mechanical, thermal, dielectric properties were assessed. Besides, the antimicrobial and biodegradation tests were also studied.

Findings

The crystallinity increases by rising SSC concentration as revealed by XRD results. Additionally, the permittivity (ε′) increases by increasing SSC filler and SSO as well. A remarkable increase in dc conductivity was attained after the addition of SSO. While raw WPVC has very low bacterial activity. The composite films are found to be very effective against staphylococcus epidermidis, staphylococcus aureus bacteria and against candida albicans as well. On the other hand, the weight loss of WPVC increases by adding of SSC and SSO, as disclosed by biodegradation studies.

Originality/value

The study aims to reach the optimum method for safe and beneficial disposal of PVC waste as well as SSC for antistatic and antimicrobial application.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 April 2024

Sixian Rao, Changwei Zhang, Fei Zhao, Lei Bao and Xiaoyi Wang

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Abstract

Purpose

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Design/methodology/approach

Corrosion of metals would be aggravated by CDI under applied stress. Notably, the presence of nitrogen in 316LN austenitic stainless steel (SS) would enhance the corrosion resistance compared to the nitrogen-absent 316L SS. To clarify the CDI behaviors, electrochemical corrosion experiments were performed on 316LN specimens under different applied stress levels. Complementary analyses, including three-dimensional morphological examinations by KH-7700 digital microscope and scanning electron microscopy coupled with energy dispersive spectroscopy, were conducted to investigate the macroscopic and microscopic corrosion morphology and to characterize the composition of corrosion products within pits. Furthermore, ion chromatography was used to analyze the solution composition variations after immersion corrosion tests of 316LN in a 6 wt.% FeCl3 solution compared to original FeCl3 solution. Electrochemical experiment results revealed the linear decrease in free corrosion potential with increasing applied stress. Electrochemical impedance spectroscopy results indicated that high tensile stress level damaged the integrity of passivation film, as evidenced by the remarkable reduction in electrochemical impedance. Ion chromatography analyses proved the concentrations increase of NO3 and NH4+ ion concentrations in the corrosion media after corrosion tests.

Findings

The enhanced corrosion resistance of 316LN SS is attributable to the presence of nitrogen.

Research limitations/implications

The scope of this study is confined to the influence of tensile stress on the electrochemical corrosion of 316LN at ambient temperatures; it does not encompass the potential effects of elevated temperatures or compressive stress.

Practical implications

The resistance to stress electrochemical corrosion in SS may be enhanced through nitrogen alloying.

Originality/value

This paper presents a systematic investigation into the stress electrochemical corrosion of 316LN, marking the inaugural study of its impact on corrosion behaviors and underlying mechanisms.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 November 2023

Huda Abdullah, Norshafadzila Mohammad Naim, Kok Seng Shum, Aidil Abdul Hamid, Mohd Hafiz Dzarfan Othman, Vidhya Selvanathan, Wing Fen Yap and Seri Mastura Mustaza

Regular monitoring of bacteria, especially Escherichia coli, in wastewater is crucial to ensure the maintenance of public health. Amperometric detection proves to be a fast…

Abstract

Purpose

Regular monitoring of bacteria, especially Escherichia coli, in wastewater is crucial to ensure the maintenance of public health. Amperometric detection proves to be a fast, sensitive and economically viable solution for E. coli enumeration. This paper reported a prototype amperometric sensor based on PANI-ZnO-NiO nanocomposite thin films prepared by sol–gel method and irradiated with gamma ray. The purpose of this study is to investigate the sensor performance of PANI-ZnO-NiO nanocomposite thin films to detect E. coli in water.

Design/methodology/approach

The films were varied with different compositions of ZnO and NiO by using the formula PANI-(ZnO)1-x-(NiO)x, with x = 0.2, 0.4, 0.6 and 0.8. PANI-ZnO-NiO nanocomposite thin films were characterized by using X-ray diffraction (XRD) and atomic force microscopy (AFM) to study the crystallinity and surface morphology of the films. The sensor performance was conducted using the current–voltage (I-V) measurement by testing the films in clean water and E. coli solution.

Findings

XRD diffractograms show the peaks of ZnO (1 0 0) and NiO (1 0 2). AFM analysis shows the surface roughness, and the grain size of PANI-ZnO-NiO thin films decreases when the concentration ratios of NiO increased. I-V curves show the difference in current flow, where the current in E. coli solution is higher than the clean water.

Originality/value

PANI-(ZnO)1-x-(NiO)x nanocomposite thin film with the highest concentration of ZnO performed the highest sensitivity among the other concentrations, which can be used to indicate the presence of E. coli bacteria in water.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 January 2024

Seda Aygül, Serkan Yılmazsönmez, Arzu Soyalp and Ayse Aytac

Titanium dioxide (TiO2) has high opacity, high brightness and whiteness, owing to its high refractive index value. It is mainly used in the coating industry and continuous efforts…

Abstract

Purpose

Titanium dioxide (TiO2) has high opacity, high brightness and whiteness, owing to its high refractive index value. It is mainly used in the coating industry and continuous efforts have been made to replace some of the TiO2 in paint with new pigments. This study aims to replace part of TiO2 pigment with various percentages of BaSO4, CaCO3 and kaolin in styrene butyl acrylate-based paint formulations, without changing the properties of paints using only titanium dioxide.

Design/methodology/approach

To determine the optimum use rate of new pigment mixing, opacity, gloss, scrub resistance and weather resistance properties have been investigated in the water-based paint formulation. The morphological properties of these samples were examined by scanning electron microscopy analysis.

Findings

In the total color change (ΔE) measurements, it was observed that the sample coded 85Ti/15Ba produced extremely similar results to the situation when TiO2 was used alone. It was seen that the best results were obtained when 85Ti/15Ba was used instead of TiO2.

Originality/value

Comparison research on the impact of replacing TiO2 with BaSO4, CaCO3 and kaolin on the performance characteristics of water-based styrene butyl acrylate-based paint formulations has not been done in the literature, according to the literature search.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 June 2023

Roma G. Elfadel, Hala M. Refat, H. Abdelwahab, Salem S. Salem, Mohamed A. Awad and M.A.M. Abdel Reheim

This paper aims to investigate the prepared modified alkyd and poly(ester-amide) (PEA) resins as antimicrobial and insecticide binders for surface coating applications.

56

Abstract

Purpose

This paper aims to investigate the prepared modified alkyd and poly(ester-amide) (PEA) resins as antimicrobial and insecticide binders for surface coating applications.

Design/methodology/approach

Salicylic diethanolamine and 4-(N, N-dimethylamino) benzylidene glutamic acid were prepared and used as new sources of polyol and dibasic acid for PEA and alkyd resins, then confirmed by: acid value, FT-IR and 1H-NMR. The coating performance of the resins was determined using measurements of physico-mechanical properties. The biological and insecticide activities of the prepared resins were investigated.

Findings

The tests carried out revealed that the modified PEA and alkyd enhanced both phyisco-mechanical and chemical properties in addition to the biological and insecticide activities. The results of this paper illustrate that the introduction of salicylic diethanolamine and 4-(N, N-dimethylamino) benzylidene glutamic acid within the resin structure improved the film performance and enhanced the antimicrobial activity performance of PEA and alkyd resins.

Research limitations/implications

The modified alkyd and PEA organic resins can be used as biocidal binders when incorporated into paint formulations for multiple surface applications, especially those that are exposed to several organisms.

Originality/value

Modified alkyd and PEA resins based on newly synthesized modifiers have a significant potential to be promising in the production and development of antimicrobial and insecticide paints, allowing them to function to restrict the spread of insects and microbial infection.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 November 2022

Xinyan Lv, Yisheng Liang, Jiang Zhong and Haifeng He

The silicone modifications of two-component epoxy resin coatings are commonly built on epoxy resins rather than on epoxy curing agents. The silicone-modified epoxy curing agent…

Abstract

Purpose

The silicone modifications of two-component epoxy resin coatings are commonly built on epoxy resins rather than on epoxy curing agents. The silicone-modified epoxy curing agent system is rarely reported yet. This study aims to prepare the polysiloxane (PS)-modified waterborne epoxy coatings based on aqueous curing agents technology.

Design/methodology/approach

Waterborne epoxy curing agents with different contents of terminal epoxy PS were synthesized by reacting with triethylenetetramine, followed by incorporating of epoxy resin (NPEL-128) and polyethylene glycol diglycidyl ether. The waterborne epoxy coatings were prepared with the above curing agents, and their performance was investigated through thermogravimetric analysis, scanning electron microscopy, mechanical characterization, gloss measurement, chemical resistance test and ultraviolet (UV) aging experiment.

Findings

The results showed that the epoxy coating prepared by silicon-modified curing agent has higher gloss, better chemical resistance and UV resistance than the coating from unmodified curing agent with terminal epoxy PS and commercially available waterborne epoxy curing agent (Aradur 3986), as well as the competitive mechanical properties and heat resistance. Reduced water absorption on fibrous paper was also obtained with the help of silicon-modified curing agent.

Originality/value

These findings will be valuable for resin researchers in addressing the modification issues about waterborne epoxy resin and curing agent.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 May 2023

Fuping Bian and Shudong Lin

This paper aims to investigate the effects on coatings performance in the epoxy silicone resin system owing to the existence of the different chain length of open-chain epoxy…

Abstract

Purpose

This paper aims to investigate the effects on coatings performance in the epoxy silicone resin system owing to the existence of the different chain length of open-chain epoxy monomer. In this paper, [4-Methylphenyl-(4–(2-methylpropyl) phenyl)]iodonium as photoinitiator was added into epoxy silicone resin by ultraviolet (UV)-cured polymerization to investigate the effects on coatings performance owing to the existence of the different chain length of open-chain epoxy monomer.

Design/methodology/approach

A simple hydrosilylation reaction was used to synthesize epoxy-based silicone prepolymers by using hydrogen-terminated polydimethylsiloxane, 1,2-epoxy-5-hexene, 1,2-epoxy-7-octene and 1,2-epoxy-9-decene as precursors.

Findings

The results revealed that the glass transition temperatures (Tg) and hydrophobicity increased with the chain length of open-chain epoxy monomer in the UV curable epoxy-based silicone coatings, and these films had excellent heat resistance, hydrophobicity, antigraffiti and ink removal properties.

Research limitations/implications

The cationic photocuring systems are not susceptible to the effect of oxygen inhibition. However, the limitation of cationic light curing process is that it requires a long curing time.

Originality/value

The coatings prepared via the UV curing approach can provide superior antismudge effects, and thus they are promising candidates for use in various industries, especially in fields such as antismudge coatings and antigraffiti coatings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 279