Search results

1 – 10 of 334
Open Access
Article
Publication date: 23 May 2022

Yangsheng Ye, Degou Cai, Lin Geng, Hongye Yan, Junkai Yao and Feng Chen

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under…

Abstract

Purpose

This study aims to propose a semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the high-speed railway (HSR) subgrade under cyclic load.

Design/methodology/approach

According to the basic framework of critical state soil mechanics and in view of the characteristics of the coarse-grained soil filler for the HSR subgrade to bear the train vibration load repeatedly for a long time, the hyperbolic empirical relationship between particle breakage and plastic work was derived. Considering the influence of cyclic vibration time and stress ratio, the particle breakage correction function of coarse-grained soil filler for the HSR subgrade under cyclic load was proposed. According to the classical theory of plastic mechanics, the shearing dilatation equation of the coarse-grained soil filler for the HSR subgrade considering particle breakage was modified and obtained. A semiempirical and semitheoretical cyclic compaction constitutive model of coarse-grained soil filler for the HSR subgrade under cyclic load was further established. The backward Euler method was used to discretize the constitutive equation, build a numerical algorithm of “elastic prediction and plastic modification” and make a secondary development of the program to solve the cyclic compaction model.

Findings

Through the comparison with the result of laboratory triaxial test under the cyclic loading of coarse-grained soil filler for the HSR subgrade, the accuracy and applicability of the cyclic compaction model were verified. Results show that the model can accurately predict the cumulative deformation characteristics of coarse-grained soil filler for the HSR subgrade under the train vibration loading repeatedly for a long time. It considers the effects of particle breakage and stress ratio, which can be used to calculate and analyze the stress and deformation evolution law of the subgrade structure for HSR.

Originality/value

The research can provide a simple and practical method for calculating deformation of railway under cyclic loading.

Open Access
Article
Publication date: 16 June 2021

Zrinka Buhin Šturlić, Mirela Leskovac, Krunoslav Žižek and Sanja Lučić Blagojević

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and…

1195

Abstract

Purpose

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and surface modification on the polyacrylate properties.

Design/methodology/approach

Improving the properties of the composite can be achieved by optimizing the compatibility between the phases of the composite system with improving the interactions at the matrix/filler interface. Therefore, the silica surface was modified with nonionic emulsifier octylphenol ethoxylate, cationic initiator 2,2'-azobis-(amidinopropane dihydrochloride) and 3-methacryloxypropyltrimethoxysilane and polyacrylate/silica nanocomposites were prepared via in situ emulsion polymerization. Particle size distribution, rheological properties of the emulsions and morphology, thermal properties and mechanical properties of the film prepared from the emulsions were investigated.

Findings

Polyacrylate/silica systems with unmodified silica, silica modified with nonionic emulsifier and cationic initiator have micrometer, while pure PA matrix and systems with silica modified with silane have nanometer particle sizes. Addition and surface modification of the filler increased emulsion viscosity. Agglomeration of silica particles in composites was reduced with silica surface modification. Silica filler improves thermal stability and tensile strength of polyacrylate.

Originality/value

This paper provides broad spectrum of information depending on filler surface modification and latex preparation via in situ emulsion polymerization and properties with high amount of filler and monomer/water ratio with the aim that prepared latex is suitable for film formation and final application.

Details

Pigment & Resin Technology, vol. 51 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Book part
Publication date: 4 May 2018

Zulnazri and Sulhatun

Purpose – This purpose of the research is to investigate the process of manufacturing LDPE recycle thermoplastic composites with reinforcement oil palm empty fruit bunch (OPEFB…

Abstract

Purpose – This purpose of the research is to investigate the process of manufacturing LDPE recycle thermoplastic composites with reinforcement oil palm empty fruit bunch (OPEFB) biomass microfillers.

Design/Methodology/Approach – Methods of physical and chemical modification of OPEFB fibers into the LDPE matrix and the addition of some compatibilizer such as MAPE and xylene process through melt blending can improve mechanical properties, electrical properties, biodegradability, and improve the morphology of composites.

Research Limitations/Implications – These composites are prepared by the following matrix ratio: filler (70:30)% and filler size (63, 75, 90, and 106) μm. The LDPE plastic is crushed to a size of 0.5–1 cm, then pressed with hot press free heating for 5 min and with a pressure of 10 min at 145 °C. Based on the characterization obtained, the tensile strength and the high impact on the use of 106 μm filler is 13.86 MPa and 3,542.6 J/m2, and thermal stability indicates the degradation temperature (T0) 497.83 °C. FT-IR analysis shows the presence of functional groups of cellulose and lignin molecules derived from TKKS collected in the composite.

Practical Implications – Based on the characterization obtained, this composite can be applied as furniture material and vehicle dashboard.

Originality/Value – Composites obtained from recycle of LDPPE plastics waste has some advantages such as good compatibility and high tensile strength. This composite used the OPEFB filler whose size is in micrometer, and so this product is different from other products.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Article
Publication date: 6 June 2023

Yunjia Wang and Qianli Zhang

It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of…

Abstract

Purpose

It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.

Design/methodology/approach

The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling, on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.

Findings

The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling, which will trigger hydrothermal erosion in case of sufficient moisture inflows, leading to the thawing settlement or the cracking of the subgrade, etc. The heat output of soil will be hindered the most in case of July filling, in which case the sinking and the distortion of the freezing front is found to be the most severe, which the recovery of the permafrost temperature field, the slowest, constituting the most unfavorable working condition. The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface, the subgrade height, the subgrade width and the volumetric thermal capacity of filler, while decreases with the increase of the thermal conductivity of filler. Therefore, the filler chose for engineering project shall be of small volumetric thermal capacity, low initial temperature and high thermal conductivity whenever possible.

Originality/value

The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 1 April 1999

1220

Abstract

Details

Pigment & Resin Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 23 March 2010

37

Abstract

Details

Pigment & Resin Technology, vol. 39 no. 2
Type: Research Article
ISSN: 0369-9420

Abstract

Details

Soldering & Surface Mount Technology, vol. 18 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Content available
Article
Publication date: 12 January 2010

52

Abstract

Details

Pigment & Resin Technology, vol. 39 no. 1
Type: Research Article
ISSN: 0369-9420

Open Access
Article
Publication date: 29 August 2023

Yangsheng Ye, Degou Cai, Qianli Zhang, Shaowei Wei, Hongye Yan and Lin Geng

This method will become a new development trend in subgrade structure design for high speed railways.

Abstract

Purpose

This method will become a new development trend in subgrade structure design for high speed railways.

Design/methodology/approach

This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China, Japan, France, Germany, the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.

Findings

It is found that in foreign countries, the layered reinforced structure is generally adopted for the subgrade bed of high speed railways, and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed, while the simple structure is adopted in China; in foreign countries, different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice, while in China, compaction coefficient, subsoil coefficient and dynamic deformation modulus are adopted for such evaluation; in foreign countries, the subgrade top deformation control method, the subgrade bottom deformation control method, the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways, while in China, dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design. However, the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.

Originality/value

This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Content available

Abstract

Details

Industrial Robot: An International Journal, vol. 28 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 334