Search results

1 – 10 of over 3000
Article
Publication date: 1 June 2000

G. Zak, M. Haberer, C.B. Park and B. Benhabib

As a way of enhancing the mechanical properties of photopolymer‐based parts produced by layered manufacturing (LM) techniques, the use of short glass‐fibre reinforcements has been…

5555

Abstract

As a way of enhancing the mechanical properties of photopolymer‐based parts produced by layered manufacturing (LM) techniques, the use of short glass‐fibre reinforcements has been recently explored in the literature. This paper proposes a novel methodology that utilizes a modified rule‐of‐mixtures model for the prediction of the mechanical properties of such layered composites. The prediction process employs empirical data on (i) the fibre‐matrix interface, (ii) the fibres’ geometrical arrangement within the specimens (i.e. fibreorientation distribution), and (iii) the fibre‐length distribution. The effects of the fibreorientation and fibre‐length distributions are accounted for in the prediction model by the fibre‐length‐correction and orientation‐efficiency factors. Comparison of extensive experimental results and model‐based predictions of mechanical properties of layered composites demonstrated the effectiveness of the proposed estimation methodology.

Details

Rapid Prototyping Journal, vol. 6 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 February 2020

Feras Korkees, James Allenby and Peter Dorrington

3D printing of composites has a high degree of design freedom, which allows for the manufacture of complex shapes that cannot be achieved with conventional manufacturing…

Abstract

Purpose

3D printing of composites has a high degree of design freedom, which allows for the manufacture of complex shapes that cannot be achieved with conventional manufacturing processes. This paper aims to assess the design variables that might affect the mechanical properties of 3D-printed fibre-reinforced composites.

Design/methodology/approach

Markforged Mark-Two printers were used to manufacture samples using nylon 6 and carbon fibres. The effect of fibre volume fraction, fibre layer location and fibre orientation has been studied using three-point flexural testing.

Findings

The flexural strength and stiffness of the 3D-printed composites increased with increasing the fibre volume fraction. The flexural properties were altered by the position of the fibre layers. The highest strength and stiffness were observed with the reinforcement evenly distributed about the neutral axis of the sample. Moreover, unidirectional fibres provided the best flexural performance compared to the other orientations. 3D printed composites also showed various failure modes under bending loads.

Originality/value

Despite multiple studies available on 3D-printed composites, there does not seem to be a clear understanding and consensus on how the location of the fibre layers can affect the mechanical properties and printing versatility. Therefore, this study covered this design parameter and evaluated different locations in terms of mechanical properties and printing characteristics. This is to draw final conclusions on how 3D printing may be used to manufacture cost-effective, high-quality parts with excellent mechanical performance.

Article
Publication date: 12 May 2023

Jiongyi Yan, Emrah Demirci and Andrew Gleadall

This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing…

Abstract

Purpose

This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing approach.

Design/methodology/approach

In this study, recently validated single-filament-wide tensile-testing specimens were used for four polymers with and without short-fibre reinforcement. Critically, this specimen construct facilitates filament orientation control, for representative longitudinal and transverse composite directions, and enables measurement of interlayer bonded area, which is impossible with “slicing” software but essential in effective property measurement. Tensile properties were studied along the direction of extruded filaments (F) and normal to the interlayer bond (Z) both experimentally and theoretically via the Kelly–Tyson model, bridging model and Halpin–Tsai model.

Findings

Even though the four matrix-material properties varied hugely (1,440% difference in ductility), consistent material-independent trends were identified when adding fibres: ductility reduced in both F- and Z-directions; stiffness and strength increased in F but decreased or remained similar in Z; Z:F strength anisotropy and stiffness anisotropy ratios increased. Z:F strain-at-break anisotropy ratio decreased; stiffness and strain-at-break anisotropy were most affected by changes to F properties, whereas strength anisotropy was most affected by changes to Z properties.

Originality/value

To the best of the authors’ knowledge, this is the first study to assess interlayer bond strength of composite materials based on measured interlayer bond areas, and consistent fibre-induced properties and anisotropy were found. The results demonstrate the critical influence of mesostructure and microstructure for three-dimensional printed composites. The authors encourage future studies to use specimens with a similar level of control to eliminate structural defects (inter-filament voids and non-uniform filament orientation).

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 May 2022

Russo Swart, Feras Korkees, Peter Dorrington and Joshua Thurman

Composites 3D printing has the potential to replace the conventional manufacturing processes for engineering applications because it allows for the manufacturing of complex shapes…

Abstract

Purpose

Composites 3D printing has the potential to replace the conventional manufacturing processes for engineering applications because it allows for the manufacturing of complex shapes with the possibility of reducing the manufacturing cost. This paper aims to analyse the performance of 3D printed fibre reinforced polymer composites to investigate the energy absorption capabilities and the residual properties before and after impact.

Design/methodology/approach

Various composites composed of carbon fibres and Kevlar fibres embedded into both Onyx and nylon matrix were printed using Markforged-Two 3D printers. Specimens with different fibre orientations and fibre volume fractions (Vf) were printed. A drop-weight impact test was performed at energies of 2, 5, 8 and 10 J. Flexural testing was performed to evaluate the flexural strength, flexural modulus and absorbed energy under bending (AEUB) before and after impact. Additionally, 3D printed carbon fibre composites were tested at two different temperatures to study their behaviour under room and sub-ambient temperatures. Failure modes were investigated using optical and high depth of field microscopes for all 3D printed composite samples.

Findings

Kevlar/nylon composites with a unidirectional lay-up and 50% Vf exhibited the most prominent results for AEUB at room temperature. The high-Vf carbon fibre composite showed the highest ultimate strength and modulus and performed best at both temperature regimes.

Originality/value

The work, findings and testing produced in this paper are entirely original with the objective to provide further understanding of 3D printed composites and its potential for use in many applications.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 September 2023

Jiongyi Yan, Emrah Demirci and Andrew Gleadall

Extrusion width, the width of printed filaments, affects multiple critical aspects in mechanical properties in material extrusion additive manufacturing: filament geometry…

Abstract

Purpose

Extrusion width, the width of printed filaments, affects multiple critical aspects in mechanical properties in material extrusion additive manufacturing: filament geometry, interlayer load-bearing bonded area and fibre orientation for fibre-reinforced composites. However, this study aims to understand the effects of extrusion width on 3D printed composites, which has never been studied systematically.

Design/methodology/approach

Four polymers with and without short-fibre reinforcement were 3D printed into single-filament-wide specimens. Tensile properties, mechanical anisotropy and fracture mechanisms were evaluated along the direction of extruded filaments (F) and normal to the interlayer bond (Z). Extrusion width, nozzle temperature and layer height were studied separately via single-variable control. The extrusion width was controlled by adjusting polymer flow in the manufacturing procedure (gcode), where optimisation can be achieved with software/structure design as opposed to hardware.

Findings

Increasing extrusion width caused a transition from brittle to ductile fracture, and greatly reduced directional anisotropy for strength and ductility. For all short fibre composites, increasing width led to an increase in strain-at-break and decreased strength and stiffness in the F direction. In the Z direction, increasing width led to increased strength and strain-at-break, and stiffness decreased for less ductile materials but increased for more ductile materials.

Originality/value

The transformable fracture reveals the important role of extrusion width in processing-structure-property correlation. This study reveals a new direction for future research and industrial practice in controlling anisotropy in additive manufacturing. Increasing extrusion width may be the simplest way to reduce anisotropy while improving printing time and quality in additive manufacturing.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 April 2018

Naresh Neeli, M.P. Jenarthanan and G. Dileep Kumar

The purpose of this paper is to optimise the process parameters, namely, fibre orientation angle, helix angle, spindle speed, and feed rate in milling of glass fibre-reinforced…

Abstract

Purpose

The purpose of this paper is to optimise the process parameters, namely, fibre orientation angle, helix angle, spindle speed, and feed rate in milling of glass fibre-reinforced plastic (GFRP) composites using grey relational analysis (GRA) and desirability function analysis (DFA).

Design/methodology/approach

In this work, experiments were carried out as per the Taguchi experimental design and an L27 orthogonal array was used to study the influence of various combinations of process parameters on surface roughness and delamination factor. As a dynamic approach, the multiple response optimisation was carried out using GRA and DFA for simultaneous evaluation. These two methods are best suited for multiple criteria evaluation and are also not much complicated.

Findings

The process parameters were found optimum at a fibre orientation angle of 15°, helix angle of 25°, spindle speed of 6,000 rpm, and a feed rate of 0.04 mm/rev. Analysis of variance was employed to classify the significant parameters affecting the responses. The results indicate that the fibre orientation angle is the most significant parameter preceded by helix angle, feed rate, and spindle speed for GFRP composites.

Originality/value

An attempt to optimise surface roughness and delamination factor together by combined approach of GRA and DFA has not been previously done.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 August 2019

Isaac Ferreira, Margarida Machado, Fernando Alves and António Torres Marques

In industry, fused filament fabrication (FFF) offers flexibility and agility by promoting a reduction in costs and in the lead-time (i.e. time-to-market). Nevertheless, FFF parts…

1144

Abstract

Purpose

In industry, fused filament fabrication (FFF) offers flexibility and agility by promoting a reduction in costs and in the lead-time (i.e. time-to-market). Nevertheless, FFF parts exhibit some limitations such as lack of accuracy and/or lower mechanical performance. As a result, some alternatives have been developed to overcome some of these restrictions, namely, the formulation of high performance polymers, the creation of fibre-reinforced materials by FFF process and/or the design of new FFF-based technologies for printing composite materials. This work aims to analyze these technologies.

Design/methodology/approach

This work aims to study and understand the advances in the behaviour of 3D printed parts with enhanced performance by its reinforcement with several shapes and types of fibres from nanoparticles to continuous fibre roving. Thus, a comprehensive survey of significant research studies carried out regarding FFF of fibre-reinforced thermoplastics is provided, giving emphasis to the most relevant and innovative developments or adaptations undergone at hardware level and/or on the production process of the feedstock.

Findings

It is shown that the different types of reinforcement present different challenges for the printing process with different outcomes in the part performance.

Originality/value

This review is focused on joining the most important researches dedicated to the process of FFF-printed parts with different types reinforcing materials. By dividing the reinforcements in categories by shape/geometry and method of processing, it is possible to better quantify performance improvements.

Details

Rapid Prototyping Journal, vol. 25 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 2003

Jakub Hruza and Petr Havlicek

This contribution is focused on the relations between the fibre orientation and the air filtration properties. The fiber orientation is intended as the orientation of fibre to…

Abstract

This contribution is focused on the relations between the fibre orientation and the air filtration properties. The fiber orientation is intended as the orientation of fibre to main stream or as the alignment of fibres each other. There are two reasons to study this problem. The relation between theoretical model and real filter and the possibility how to increase the filter quality due to fiber orientation.

The definitions of the filter characteristics, filter properties and the filtration mechanisms are noted and short view to velocity field is outlined.

The first examined model is the "cube" model where the same aligned fibrous object is oriented in different directions to the main stream. This model provides interesting information but some discrepancies too.

The second examined model compare the flat filters with different alignment of fibres each other. It seems that this parameter affect the filter properties markedly.

Both models are examined in relation to the drop in pressure and the filter efficiency.

Details

Research Journal of Textile and Apparel, vol. 7 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 January 1976

T. Tsukizoe and N. Ohmae

Tribology of the carbon‐fibre‐reinforced plastics has been investigated. The wear‐resistance of carbon‐fibre‐reinforced plastics was found to be much better than those of other…

Abstract

Tribology of the carbon‐fibre‐reinforced plastics has been investigated. The wear‐resistance of carbon‐fibre‐reinforced plastics was found to be much better than those of other plastics reinforced with fibres of glass and stainless steel and was affected by the fibreorientation relative to sliding. Law of mixture in the frictional coefficient of composite materials was deduced; a comparison of calculated values with experimental data showed good agreements. Wear‐resistance of the carbon‐fibre‐reinforced plastics against fretting was also examined; good wear‐resistance was obtained when sliding within a region about 30° from the carbon‐fibre axis.

Details

Industrial Lubrication and Tribology, vol. 28 no. 1
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 5 August 2014

N. Naresh, M.P. Jenarthanan and R. Hari Prakash

In milling process the surface roughness and delamination are the most important performance characteristics, which are influenced by many factors like fibre orientation angle…

Abstract

Purpose

In milling process the surface roughness and delamination are the most important performance characteristics, which are influenced by many factors like fibre orientation angle, helix angle, feed rate and spindle speed. The selection of these parameters at optimum level plays a vital role in getting minimum surface roughness and delamination factor. The purpose of this paper is to present multi-objective optimisation of Computer Numerical Control milling parameters using Grey-Taguchi method to get minimum surface roughness and delamination factor in machining of glass fibre reinforced plastics (GFRP) composites used in automotive, aircraft and manufacture of space ships.

Design/methodology/approach

The experiments are designed and conducted based on Taguchi's L27 orthogonal array by taking fibre orientation angle, helix angle, feed rate and spindle speed at three levels and responses are surface roughness and delamination factor. Taguchi's signal-to-noise (S/N) ratio are determined based on their performance characteristics. A Grey relation grade is obtained by using S/N ratio. Based on Grey relational grade value, optimum levels of parameters have been identified by using response table and response graph.

Findings

Optimum levels of parameters for GFRP composites have been identified by using response table and response graph and the significant contributions of controlling parameters are estimated using analysis of variance.

Originality/value

The combined effect of fibre orientation angle and helix angle during milling of GFRP composites using Grey relational analysis has not been previously attempted for analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 3000