Search results

1 – 10 of over 1000
Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1098

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1551

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1248

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 November 2010

George K. Stylios

Examines the fifteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the fifteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 June 2017

Md. Mofakkharul Islam, Md. Ibrahim H. Mondal and Firoz Ahmed

The purpose of this paper is to synthesize chitosan, N-octyl chitosan (NOCh) and carboxymethyl chitosan (CMCh) derivative from prawn shell wastes and identify their applications…

Abstract

Purpose

The purpose of this paper is to synthesize chitosan, N-octyl chitosan (NOCh) and carboxymethyl chitosan (CMCh) derivative from prawn shell wastes and identify their applications as modifiers on cellulosic fibres, jute and cotton, to develop quality textile fibres.

Design/methodology/approach

Chitosan was obtained by deacetylation of chitin. NOCh was obtained by reductive amination of chitosan. Water-soluble CMCh was prepared by reacting chitosan with monochloroacetic acid in aqueous alkaline media at ambient conditions. Chitosan, NOCh and CMCh were applied on cellulosic fibres, and structure and physico-chemical characteristics of chitosan derivatives and modified fibres were investigated and analysed.

Findings

The molecular weight, degree of deacetylation and ash content of prepared chitosan were 1,39,958 Da, 85 and 2.33 per cent, respectively. The moisture content, water holding capacity and total nitrogen content were above 10, 450 and 6.5 per cent, respectively. Average degree of substitution of CMCh was 0.82 as determined by titrimetric analysis. Fourier transform infrared spectroscopy (FTIR) spectra showed characteristic peaks of carbonyl group at 1,659 cm−1, NH2 at 1,600 cm−1, symmetric stretching of C-H in the methyl group at 1,520 cm−1 and carboxylic group at 1,737 cm−1. Thermograms showed moderate thermal stability in treated fibres compared to untreated fibres. Surface morphology of the modified fibres exhibited smoother surface due to the absorption of chitosan, NOCh and CMCh.

Originality/value

Modification of jute and cotton by sorption of NOCh and CMCh introduced new functional groups on the fibre surface with chemical bonding, which was confirmed by FTIR. Surface morphology of the fibres was carried out by scanning electron microscopy. As the modified fibres also showed good dyeability and colour fastness as well as other properties, the chitosan derivatives as a textile modifier would be helpful to avoid synthetic petroleum-based chemical modifiers as well as to manage the environmental pollution from prawn shell waste and other toxic chemicals.

Details

Research Journal of Textile and Apparel, vol. 21 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 25 June 2020

Ann Wairimu Mburu, Josphat Igadwa Mwasiagi and Joseph Kinyanjui Muiruri

Bacterial exopolysaccharides (eps) have fascinating chemical compositions, properties and structures which could be used in the modification of natural fibres. Bacterial eps have…

Abstract

Purpose

Bacterial exopolysaccharides (eps) have fascinating chemical compositions, properties and structures which could be used in the modification of natural fibres. Bacterial eps have therefore been used to modify plant cellulose fibre surface and impart desired properties. The purpose of this paper is therefore to investigate the influence of gin trash cultured bacteria eps on the physical and structural properties of cotton fibres.

Design/methodology/approach

Gin trash soil sample was collected from a ginnery in Kenya, and physiochemical and microbial characterization was done. The soil sample was then fermented for 24 h before being used to treat raw cotton fibres at varied conditions of temperature, pH and treatment time periods. Physical and structural properties of the treated fibres were then determined using USTER HVI-1000 M700, Fourier transform infrared, scanning electron microscope (SEM) and X-ray diffraction (XRD) and compared with those of the raw fibres.

Findings

The bacteria broth treated fibres were found to have increased in strength, spinning consistency index, elongation and fineness by 25.44, 24.30, 11.70 and 3.60%, respectively. The variations were attributed to interactions of bacterial eps with cotton cellulose through hydrogen bonding. SEM and XRD analysis revealed an increase in fibre surface roughness and crystallinity, respectively.

Originality/value

Bacterial eps have been used to modify plant cellulose fibre surface and impart desired properties. Eps producing bacteria have been isolated from different habitats such as saline water, soil samples, food wastes and petroleum-contaminated soil. To the best of the authors’ knowledge, bacterial eps cultured from gin trash soil sample for modification of cotton fibres have however not been previously done, hence the originality of the current study.

Details

Research Journal of Textile and Apparel, vol. 24 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 9 November 2012

George K. Stylios

Examines the seventeenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1112

Abstract

Examines the seventeenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 November 2006

George K. Stylios

Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

1097

Abstract

Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 November 2011

George K. Stylios

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 May 2016

Linjie Su, Bohong Li, Dongyu Zhao, Chuanli Qin and Zheng Jin

The purpose of this paper is to prepare a new modified activated carbon fibers (ACFs) of high specific capacitance used for electrode material of supercapacitor.

Abstract

Purpose

The purpose of this paper is to prepare a new modified activated carbon fibers (ACFs) of high specific capacitance used for electrode material of supercapacitor.

Design/methodology/approach

In this study, the specific capacitance of ACF was significantly increased by using the phenolic resin microspheres and melamine as modifiers to prepare modified PAN-based activated carbon fibers (MACFs) via electrospinning, pre-oxidation and carbonization. The symmetrical supercapacitor (using MACF as electrode) and hybrid supercapacitor (using MACF and activated carbon as electrodes) were tested in term of electrochemical properties by cyclic voltammetry, AC impedance and cycle stability test.

Findings

It was found that the specific capacitance value of the modified fibers were increased to 167 Fg-1 by adding modifiers (i.e. 20 wt.% microspheres and 15 wt.% melamine) compared to that of unmodified fibers (86.17 Fg-1). Specific capacitance of modified electrode material had little degradation over 10,000 cycles. This result can be attributed to that the modifiers embedded into the fibers changed the original morphology and enhanced the specific surface area of the fibers.

Originality/value

The modified ACFs in our study had high specific surface area and significantly high specific capacitance, which can be applied as efficient and environmental absorbent, and advanced electrode material of supercapacitor.

Details

Pigment & Resin Technology, vol. 45 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 1000