Search results

1 – 10 of 122
Article
Publication date: 29 December 2023

Noah Ray and Il Yong Kim

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the…

Abstract

Purpose

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components.

Design/methodology/approach

This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation.

Findings

Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design.

Originality/value

Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.

Article
Publication date: 20 December 2023

Prashant Anerao, Atul Kulkarni and Yashwant Munde

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Abstract

Purpose

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Design/methodology/approach

The study presents a variety of biocomposite materials that have been used in filaments for 3D printing by different researchers. The process of making filaments is then described, followed by a discussion of the process parameters associated with the FDM.

Findings

To achieve better mechanical properties of 3D-printed parts, it is essential to optimize the process parameters of FDM while considering the characteristics of the biocomposite material. Polylactic acid is considered the most promising matrix material due to its biodegradability and lower cost. Moreover, the use of natural fibres like hemp, flax and sugarcane bagasse as reinforcement to the polymer in FDM filaments improves the mechanical performance of printed parts.

Originality/value

The paper discusses the influence of critical process parameters of FDM like raster angle, layer thickness, infill density, infill pattern and extruder temperature on the mechanical properties of 3D-printed biocomposite.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 2024

Suvranshu Pattanayak, Susanta Kumar Sahoo, Ananda Kumar Sahoo, Raviteja Vinjamuri and Pushpendra Kumar Dwivedi

This study aims to demonstrate a modified wire arc additive manufacturing (AM) named non-transferring arc and wire AM (NTA-WAM). Here, the build plate has no electrical arc…

Abstract

Purpose

This study aims to demonstrate a modified wire arc additive manufacturing (AM) named non-transferring arc and wire AM (NTA-WAM). Here, the build plate has no electrical arc attachment, and the system’s arc is ignited between tungsten electrode and filler wire.

Design/methodology/approach

The effect of various deposition conditions (welding voltage, travel speed and wire feed speed [WFS]) on bead characteristics is studied through response surface methodology (RSM). Under optimum deposition condition, a single-bead and thin-layered part is fabricated and subjected to microstructural, tensile testing and X-ray diffraction study. Moreover, bulk texture analysis has been carried out to illustrate the effect of thermal cycles and tensile-induced deformations on fibre texture evolutions.

Findings

RSM illustrates WFS as a crucial deposition parameter that suitably monitors bead width, height, penetration depth, dilution, contact angle and microhardness. The ferritic (acicular and polygonal) and lath bainitic microstructure is transformed into ferrite and pearlitic micrographs with increasing deposition layers. It is attributed to a reduced cooling rate with increased depositions. Mechanical testing exhibits high tensile strength and ductility, which is primarily due to compressive residual stress and lattice strain development. In deposits, ϒ-fibre evolution is more resilient due to the continuous recrystallisation process after each successive deposition. Tensile-induced deformation mostly favours ζ and ε-fibre development due to high strain accumulations.

Originality/value

This modified electrode arrangement in NTA-WAM suitably reduces spatter and bead height deviation. Low penetration depth and dilution denote a reduction in heat input that enhances the cooling rate.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 January 2023

Ying Ling Jin, Fatimah De’nan, Kok Keong Choong and Nor Salwani Hashim

Cold-formed steel has been used extensively as secondary elements such as purlins and girts in building frames. Purlin is critical to the structure of the roof because it supports…

Abstract

Purpose

Cold-formed steel has been used extensively as secondary elements such as purlins and girts in building frames. Purlin is critical to the structure of the roof because it supports the weight of the roof deck and aids to make the entire roof structure more rigid. Furthermore, cold-formed steel purlin is a replacement for wood purlin because steel purlins are light weight and more economical. Hence, the purpose of this study to investigate the effect of opening due to torsion behaviour.

Design/methodology/approach

This analysis used cold-formed steel hat purlin with and without openings (WOs) under different opening shape, location and spacing by using finite element LUSAS software.

Findings

The finite element results showed that purlin with openings had higher angle of rotation than section WO, with a percentage difference of not more than 6%. When the opening was located at mid-span, the angle of rotation reduced. Angle of rotation increased when the opening spacing increased. Number of openings also affected the torsional behaviour of the purlin. Five opening shapes, which were circle, diamond, C-hexagon, square and elongated circle, were studied. Among all the shapes, purlin with diamond opening was more resistance to torsion.

Originality/value

The use of cold-formed steel section with web openings (rectangular or circular) is a practical solution when it is required to pass service ducts through the structural member. However, the presence of opening gives minor effect on the structural behaviour of cold-formed steel hat purlin.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 November 2023

Rituraj Raut, Savitri Jadhav and Nathrao B. Jadhav

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different…

Abstract

Purpose

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different materials for different components that too without compromising strength.

Design/methodology/approach

A 3D computer-aided design (CAD) model of a hexacopter with a regular hexagonal frame is presented. Furthermore, a finite element model is developed to perform a structural analysis and determine Von Mises stress and strain values along with deformations of different components of the proposed hexacopter design.

Findings

The results establish that carbon fibre outperforms acrylonitrile butadiene (ABS) with respect to deformations. Within the permissible limits of the stress and strain values, both carbon fiber and ABS are suggested for different components. Thus, a proposed hexacopter offers lighter weight, high strength and low cost.

Originality/value

The use of different materials for different components is suggested by making use of static structural analysis. This encourages new research work and helps in developing new applications of hexacopter, and it has never been reported in literature. The suggested materials for the components of the hexacopter will prove to be suitable considering weight, strength and cost.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

477

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 5 May 2022

Dat Van Truong, Song Thanh Quynh Le and Huong Mai Bui

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to…

Abstract

Purpose

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to demonstrate the process of creating an oil-absorbent web from a blend of treated kapok and polypropylene fibers.

Design/methodology/approach

Kapok fibers were separated from dried fruits, then the wax was removed with an HCl solution at different concentrations. The morphological and structural changes of these fibers were investigated using scanning electron microscopy images. The blending ratios of kapok and polypropylene fibers were 60/40, 70/30 and 80/20, respectively. The fiber blends were fed to a laboratory carding machine to form a web and then consolidated using the heat press technique. The absorption behavior of the formed web was evaluated regarding oil absorption capacity and oil retention capacity according to ASTM 726.

Findings

The results showed that the HCl concentration of 1.0% (wt%) gave the highest wax removal efficiency without damaging the kapok fibers. This study found that oil absorbency is influenced by the fiber blending ratio, web tensile strength and elongation, porosity, oil type and environmental conditions. The oil-absorbency of the web can be re-used for at least 20 cycles.

Research limitations/implications

This study only looked at three types of oils: diesel, kerosene and vegetable oils.

Practical implications

When the problem of oil spills in rivers and seas is growing and causing serious environmental and economic consequences, using physical methods to recover oil spills is the most effective solution.

Originality/value

This research adds to the possibility of using kapok fiber in the form of a web of non-woven fabric for practical purposes.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 April 2024

Lara E. Yousif, Mayyadah S. Abed, Aseel B. Al-Zubidi and Kadhim K. Resan

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other…

Abstract

Purpose

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other countries. With almost 80% of the world’s amputees having below-the-knee amputations, Iraq has become a global leader in the population of amputees. Important components found in lower limb prostheses include the socket, pylon (shank), prosthetic foot and connections.

Design/methodology/approach

There are two types of prosthetic feet: articulated and nonarticulated. The solid ankle cushion heel foot is the nonarticulated foot that is most frequently used. The goal of this study is to use a composite filament to create a revolutionary prosthetic foot that will last longer, have better dorsiflexion and be more stable and comfortable for the user. The current study, in addition to pure polylactic acid (PLA) filament, 3D prints test items using a variety of composite filaments, such as PLA/wood, PLA/carbon fiber and PLA/marble, to accomplish this goal. The experimental step entails mechanical testing of the samples, which includes tensile testing and hardness evaluation, and material characterization by scanning electron microscopy-energy dispersive spectrometer analysis. The study also presents a novel design for the nonarticulated foot that was produced with SOLIDWORKS and put through ANSYS analysis. Three types of feet are produced using PLA, PLA/marble and carbon-covered PLA/marble materials. Furthermore, the manufactured prosthetic foot undergoes testing for dorsiflexion and fatigue.

Findings

The findings reveal that the newly designed prosthetic foot using carbon fiber-covered PLA/marble material surpasses the PLA and PLA/marble foot in terms of performance, cost-effectiveness and weight.

Originality/value

To the best of the author’s knowledge, this is the first study to use composite filaments not previously used, such as PLA/wood, PLA/carbon fiber and PLA/marble, to design and produce a new prosthetic foot with a longer lifespan, improved dorsiflexion, greater stability and enhanced comfort for the patient. Beside the experimental work, a numerical technique specifically the finite element method, is used to assess the mechanical behavior of the newly designed foot structure.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 November 2022

Aissa Boucedra and Madani Bederina

This paper aims to characterize and develop a new ecological lightweight concrete reinforced by addition of palm plant fibers (from vegetal waste) to be used in the thermal and…

Abstract

Purpose

This paper aims to characterize and develop a new ecological lightweight concrete reinforced by addition of palm plant fibers (from vegetal waste) to be used in the thermal and acoustical insulation of local constructions. The date palm plant fibers are characterized by their low sensitivity to chemical reactions, low cost and large availability in local regions. Therefore, the newly obtained lightweight concrete may suggest a great interest, as it seems to be able to achieve good solutions for local construction problems, technically, economically and ecologically.

Design/methodology/approach

The experimental program focused on developing the composition of palm-fiber-reinforced concrete, by studying the effect of the length of the fibers (10, 20, 30 and 40 mm) and their mass percentage (0.5%, 1%, 1.5% and 2%), on the mechanical and acoustical properties of the composite. The main measured parameters were the compressive strength and flexural strength, sound absorption coefficient, noise reduction coefficient (NRC), etc. These tests were also borne out by the measure of density and water absorption, as well as microstructure analyses. To fully appreciate the behavior of the material, visualizations under optical microscope and scanning electron microscope analyses were carried out.

Findings

The addition of plant fibers to concrete made it possible to formulate a new lightweight concrete having interesting properties. The addition of date palm fibers significantly decreased the density of the concrete and consequently reduced its mechanical strength, particularly in compression. Acceptable compressive strength values were possible, according to the fibers content, while better values have been obtained in flexion. On the other hand, good acoustical performances were obtained: a considerable increase in the sound absorption coefficient and the NRC was recorded, according to the content and length of fibers. Even the rheological behavior has been improved with the addition of fibers, but with short fibers only.

Originality/value

Over the recent decades, many studies have attempted to search for more sustainable and environmentally friendly building materials. Therefore, this work aims to study the possibility of using waste from date palm trees as fibers in concrete instead of the conventionally used fibers. Although many researches have already been conducted on the effect of palm plant fibers on the mechanical/physical properties of concrete, no information is available neither on the formulation of this type of concrete nor on its acoustical properties. Indeed, due to the scarcity of raw materials and the excessive consumption of energy, the trend of plant fibers as resources, which are natural and renewable, is very attractive. It is therefore a major recycling project of waste and recovery of local materials.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 April 2024

Zhe Liu, Yichen Yang and Xiuchen Wang

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily…

Abstract

Purpose

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily shield electromagnetic waves through reflection, which can lead to the formation of resonance effects that severely compromise their protective capabilities and potentially cause secondary electromagnetic pollution in the external environment.

Design/methodology/approach

In this paper, carbon nanotube fibers are added via spacing method to replace some stainless-steel fibers to impart absorbing properties to stainless-steel EMS fabric. The shielding effectiveness (SE) of the EMS fabrics across various polarization directions is analyzed. Additionally, a spacing arrangement for the carbon nanotube fibers is designed. The EMS fabric with carbon nanotube fibers is manufactured using a semi-automatic sample loom, and its SE is tested using a small window method test box in both vertical and horizontal polarization directions.

Findings

According to the experimental data and electromagnetic theory analysis, it is determined that when the spacing between the carbon nanotube fibers is less than a specific distance, the SE of the stainless-steel EMS fabric significantly improves. The fabric exhibits stable absorbing properties within the tested frequency range, effectively addressing the issue of secondary damage that arises from relying solely on reflective shielding. Conversely, as the spacing between the carbon nanotube fibers exceeds this distance, the SE diminishes. Notably, the SE in the vertical polarization direction is substantially higher than that in the horizontal polarization direction at the same frequency.

Originality/value

This study provides a new path for the development of high-performance EMS fabrics with good wave-absorption characteristics and SE.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 122