Search results

1 – 10 of 219
Article
Publication date: 14 June 2022

Sheraz Hussain Siddique Hussain Yousfani, Salma Farooq, Quratulain Mohtashim and Hugh Gong

Porosity is one of the most important properties of the textile substrate. It can influence the comfort of a garment by affecting its breathability and thermal conductivity…

Abstract

Purpose

Porosity is one of the most important properties of the textile substrate. It can influence the comfort of a garment by affecting its breathability and thermal conductivity. During the process of dyeing, the dye liquor comes in contact with the substrate; the absorption of the dye liquor into the substrate will be dependent on its porosity. The concept of porosity between the yarns of fabric is a common phenomenon; however, the porosity between the fibres in the yarn can also influence the dyeing behaviour of the fabric.

Design/methodology/approach

In this research, ring and rotor yarns of 25/s and 30/s counts are considered as textile substrates. The porosity of yarns was determined theoretically and experimentally using the image analysis method.

Findings

It was found that theoretical porosity is independent of the yarn manufacturing method. In addition, 30/s yarn was more porous as compared with 25/s yarn having a higher pore area. Rotor yarns had higher porosity, dye fixation and K/S as compared with ring yarns. Dyeing behaviour was also dependent on the count of yarn. Specifically, 30/s yarns have higher dye fixation as compared with 25/s yarns. However, 25/s yarns were dyed with deeper shades showing higher K/S values. Also, 25/s yarns are coarser than 30/s yarns having higher diameters and cross-sectional area, thus resulting in deeper shades and higher K/S values.

Originality/value

This novel technique is based on the comparative study of the porosity of various types of yarns using the image analysis technique. This investigation shows that the porosity between the fibres in the yarn can also influence the dyeing behaviour of the yarn.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 April 2023

Yang Yang, Weijing Zhang, Zheng Liu and Peihua Zhang

The purpose of this work is to investigate the effect of filament composition with different specifications on the thermal comfort properties of bi-layer knitted fabrics.

Abstract

Purpose

The purpose of this work is to investigate the effect of filament composition with different specifications on the thermal comfort properties of bi-layer knitted fabrics.

Design/methodology/approach

In this paper eight bi-layer knitted fabrics with the same knitting structure but different filament compositions were prepared, and the thermal-wet comfort properties of these fabrics were examined. According to experimental data, the effect of filament composition on the thermal comfort properties of fabric was analyzed.

Findings

The increasing difference of hydrophilicity between inner and outer layers resulted in the enhancement of moisture management properties. Better thermal-physiology performance was exhibited by fabrics made up of finer and circular section fibers. Excellent thermal transfer, drying performance and one-way water transport capacity benefited the improvement of dynamic cooling effect of fabrics.

Originality/value

This work provides a useful and effective method for the development of bi-layer knitted fabric applied for sports and summer clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 May 2023

Jiongyi Yan, Emrah Demirci and Andrew Gleadall

This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing…

Abstract

Purpose

This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing approach.

Design/methodology/approach

In this study, recently validated single-filament-wide tensile-testing specimens were used for four polymers with and without short-fibre reinforcement. Critically, this specimen construct facilitates filament orientation control, for representative longitudinal and transverse composite directions, and enables measurement of interlayer bonded area, which is impossible with “slicing” software but essential in effective property measurement. Tensile properties were studied along the direction of extruded filaments (F) and normal to the interlayer bond (Z) both experimentally and theoretically via the Kelly–Tyson model, bridging model and Halpin–Tsai model.

Findings

Even though the four matrix-material properties varied hugely (1,440% difference in ductility), consistent material-independent trends were identified when adding fibres: ductility reduced in both F- and Z-directions; stiffness and strength increased in F but decreased or remained similar in Z; Z:F strength anisotropy and stiffness anisotropy ratios increased. Z:F strain-at-break anisotropy ratio decreased; stiffness and strain-at-break anisotropy were most affected by changes to F properties, whereas strength anisotropy was most affected by changes to Z properties.

Originality/value

To the best of the authors’ knowledge, this is the first study to assess interlayer bond strength of composite materials based on measured interlayer bond areas, and consistent fibre-induced properties and anisotropy were found. The results demonstrate the critical influence of mesostructure and microstructure for three-dimensional printed composites. The authors encourage future studies to use specimens with a similar level of control to eliminate structural defects (inter-filament voids and non-uniform filament orientation).

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 January 2024

Wiah Wardiningsih, Farhan Aqil Syauqi Pradanta, Ryan Rudy, Resty Mayseptheny Hernawati and Doni Sugiyana

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric…

Abstract

Purpose

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric produced using these fibres.

Design/methodology/approach

The fibres were extracted via a decortication method. The acquired intrinsic qualities of the fibres were used to assess the feasibility of using them in textile applications. The thermal bonding approach was used for the development of the non-woven fabric, using a hot press machine with low-melt polyester fibre as a binder.

Findings

The mean length of Curcuma longa fibres was determined to be 52.73 cm, with a fineness value of 4.00 tex. The fibres exhibited an uneven cross-sectional morphology, characterized by a diverse range of oval-shaped lumens. The fibre exhibited a tenacity of 1.45 g/denier and an elongation value of 4.30%. The fibres possessed a moisture regain value of 11.30%. The experimental non-woven fabrics had consistent weight and thickness, while exhibiting different properties in terms of tensile strength and air permeability, with Fabric C having the highest tensile strength and the lowest air permeability value.

Originality/value

The features of Curcuma longa fibre, obtained with the decortication process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising different compositions of Curcuma longa fibre and low-melt polyester fibre were produced. The tensile strength and air permeability properties of these fabrics were influenced by the composition of the fibres.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 12 October 2023

Mashford Zenda, Paul Malan and Antonie Geyer

South Africa’s wool industry plays an important role in the agricultural sector. The wool industry provides a valuable source of income for farmers who practice sustainable…

Abstract

Purpose

South Africa’s wool industry plays an important role in the agricultural sector. The wool industry provides a valuable source of income for farmers who practice sustainable farming practices. However, wool farmers face numerous challenges, such as wool contamination, dirty wool and producing good-quality wool. Good-quality wool is determined by fibre diameter, clean yield, vegetable matter and staple length. This study aims to address these challenges.

Design/methodology/approach

A multiple regression analysis of price (R/kg) of White wool and Merino wool was applied to four variables fibre diameter: vegetable matter, clean yield and staple length. The analysis was based on the data for the 2009–2019 data from Cape Wools auctions.

Findings

Fibre diameter, clean yield and staple length, with exception of vegetable matter, made a statistically significant contribution to the determination of wool price after all other independent variables were controlled for (p < 0.05). A one-unit (micron) increase in fibre diameter resulted in a 0.404-unit decrease in wool price (R/kg). A one-unit (mm) increase in staple length resulted in a 0.022-unit increase in wool price (R/kg). There was no statistically significant association between vegetable matter and wool price. A one-unit increase in clean yield was associated with a 0.111-unit increase in wool price (R/kg).

Research limitations/implications

Since wool fleeces consist of the largest portion of wool shorn from sheep, it is important for wool farmers to focus on wool with low fibre diameter, high clean yield percentage, low percentage of vegetable matter content and good length of the wool.

Practical implications

Since wool fleeces consist of the largest portion of wool shorn from sheep, it is important for wool farmers to focus on wool with low fibre diameter, high clean yield percentage, low percentage of vegetable matter content and good length of the wool.

Social implications

In a developing country such as South Africa, this study is important for the following reason. It is understanding the wool characteristics that have the most significance influence on the determination of wool price for Merino wool and White wool might effectively help the wool farmers to adapt their production systems to improve the wool characteristics that determine wool price.

Originality/value

This study identified a need for a study to be conducted on all wool classes.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 March 2022

Geetha Margret Soundri, Kavitha S. and Senthil Kumar B.

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric…

Abstract

Purpose

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric structure and the finishing treatment are the key parameters that influenced the performance of the clothing meant for sportswear. This study aims to investigate the effect of fibre blending and structural tightness factors on bi-layer sport fabric's dimensional, moisture management and thermal properties.

Design/methodology/approach

In this study, 12 different bi-layer inter-lock fabrics were produced. Polyester filament (120 Denier) yarn was fed to form the backside of the fabric, and the face side was varied with cotton, modal, wool and soya spun yarns of 30sNe. Three different types of structural tightness factors were considered, such as low, medium and high were taken for sample development. The assessment towards dimensional, moisture management and thermal properties was carried out on all the samples.

Findings

The polyester-modal blend with a high tightness factor has shown maximum overall moisture management capability (OMMC) values of 0.73 and air permeability of 205.3 cm3/cm2/s. The same sample has shown comparatively higher thermal conductivity of 61.72 × 10–3 W m-1 °C-1(Under compression state) and 58.45 × 10–3 W m-1 °C-1 (under recovery state). In the case of surface roughness is concerned, polyester-modal blends have shown the lowest surface roughness, surface roughness amplitude and surface friction co-efficient. Among the selected fibre combinations, the overall comfort level of polyester-modal bi-layer knitted structure with a higher tightness factor is appreciable. Polyester-modal is more suitable for active sportswear among the four fiber blend combinations.

Research limitations/implications

The outcome of this study will help to gain a better understanding of fibre blends, structural tightness factor and other process specifications for the development of bi-layer fabric for active sportswear applications. The dynamic functional testing methods (Moisture management and Thermal properties) were carried out to simulate the actual wearing environment of the sports clothing. This study will create a new scope of research opportunities in the field of bi-layer sports textiles.

Originality/value

This study was conducted to explore the influence of fibre blend and structural tightness factor on the comfort level of sportswear and to find the suitable fibre blend for active sportswear clothing.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 15 July 2022

Wiah Wardiningsih, Sandra Efendi, Rr. Wiwiek Mulyani, Totong Totong, Ryan Rudy and Samuel Pradana

This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.

Abstract

Purpose

This study aims to characterize the properties of natural cellulose fiber from the pseudo-stems of the curcuma zedoaria plant.

Design/methodology/approach

The fiber was extracted using the biological retting process (cold-water retting). The intrinsic fiber properties obtained were used to evaluate the possibility of using fiber for textile applications.

Findings

The average length of a curcuma zedoaria fiber was 34.77 cm with a fineness value of 6.72 Tex. A bundle of curcuma zedoaria fibers was comprised of many elementary fibers. Curcuma zedoaria had an irregular cross-section, with the lumen having a varied oval shape. Curcuma zedoaria fibers had tenacity and elongation value of 3.32 gf/denier and 6.95%, respectively. Curcuma zedoaria fibers had a coefficient of friction value of 0.46. Curcuma zedoaria fibers belong to a hygroscopic fiber type with a moisture regain value of 10.29%.

Originality/value

Extraction and Characterization of Curcuma zedoaria Pseudo-stems Fibers for Textile Application.

Article
Publication date: 11 July 2023

Amal Mohamed El-Moursy, Zeinab Mohmed Abdel Mageid, Manar Yahia Ismail Abd El-Aziz, Nour Asser and Osama Hakeim

Wearing clothes requires specifications for feeling comfortable, derived from the fibres, fabrics and finishing properties. This study aims to deal with the effect of economic…

Abstract

Purpose

Wearing clothes requires specifications for feeling comfortable, derived from the fibres, fabrics and finishing properties. This study aims to deal with the effect of economic blends containing hollow fibres, bamboo and cotton/polyester waste on the mechanical properties of the produced fabrics and the appropriate end use.

Design/methodology/approach

This research included two blends: one consisted of cotton/polyester wastes blended with bamboo and the other to which Chorisia fibres were added. Two weft counts 10,6/1 Ne were made from each blend, which were used to produce four fabric samples (S1 Chorisia-free and S2 with Chorisia); additionally, another two samples were dyed that contain Chorisia (S3) from each count. The six samples were tested by Kawabata Evaluation System (KES).

Findings

The samples gave a good total hand value (THV) for use as men's winter suits, where the thicker count 6/1, with and without Chorisia had better properties, also both counts 6, 10/1 with dye. The hollow fibres affected the fabrics’ properties, including thickness, shear, bending, thermal conductivity and weight. Both blends had a positive effect on THV.

Research limitations/implications

Cotton/polyester waste, Chorisia and bamboo fibres were tested, and 2% Remazol Yellow GNL dye was used.

Practical implications

The ratio of blending, weft counts and dye affected the fabric’s properties, with consequences for the use of the Kawabata system and its applications.

Social implications

The fabrics used in this research may be considered to be economical and have good THV.

Originality/value

The study proved the usefulness of fabrics made of two blends. The Chorisia component may be seen as a good alternative to cotton fibres to reduce the cost of producing high-consumption winter suit fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 December 2023

Brahim Chebbab, Haroun Ragueb, Walid Ifrah and Dounya Behnous

This study addresses the reliability of a composite fiber (carbon fibers/epoxy matrix) at microscopic level, with a specific focus on its behavior under compressive stresses. The…

Abstract

Purpose

This study addresses the reliability of a composite fiber (carbon fibers/epoxy matrix) at microscopic level, with a specific focus on its behavior under compressive stresses. The primary goal is to investigate the factors that influence the reliability of the composite, specifically considering the effects of initial fiber deformation and fiber volume fraction.

Design/methodology/approach

The analysis involves a multi-step approach. Initially, micromechanics theory is employed to derive limit state equations that define the stress levels at which the fiber remains within an acceptable range of deformation. To assess the composite's structural reliability, a dedicated code is developed using the Monte Carlo method, incorporating random variables.

Findings

Results highlight the significance of initial fiber deformation and volume fraction on the composite's reliability. They indicate that the level of initial deformation of the fibers plays a crucial role in determining the composite reliability. A fiber with 0.5% initial deformation exhibits the ability to endure up to 28% additional stress compared to a fiber with 1% initial deformation. Conversely, a higher fiber volume fraction contributes positively to the composite's reliability. A composite with 60% fiber content and 0.5% initial deformation can support up to 40% additional stress compared to a composite containing 40% fibers with the same deformation.

Originality/value

The study's originality lies in its comprehensive exploration of the factors affecting the reliability of carbon fiber-epoxy matrix composites under compressive stresses. The integration of micromechanics theory and the Monte Carlo method for structural reliability analysis contributes to a thorough understanding of the composite's behavior. The findings shed light on the critical roles played by initial fiber deformation and fiber volume fraction in determining the overall reliability of the composite. Additionally, the study underscores the importance of careful fiber placement during the manufacturing process and emphasizes the role of volume fraction in ensuring the final product's reliability.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 219