Search results

1 – 10 of 469
Article
Publication date: 31 January 2024

Wiah Wardiningsih, Farhan Aqil Syauqi Pradanta, Ryan Rudy, Resty Mayseptheny Hernawati and Doni Sugiyana

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric…

Abstract

Purpose

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric produced using these fibres.

Design/methodology/approach

The fibres were extracted via a decortication method. The acquired intrinsic qualities of the fibres were used to assess the feasibility of using them in textile applications. The thermal bonding approach was used for the development of the non-woven fabric, using a hot press machine with low-melt polyester fibre as a binder.

Findings

The mean length of Curcuma longa fibres was determined to be 52.73 cm, with a fineness value of 4.00 tex. The fibres exhibited an uneven cross-sectional morphology, characterized by a diverse range of oval-shaped lumens. The fibre exhibited a tenacity of 1.45 g/denier and an elongation value of 4.30%. The fibres possessed a moisture regain value of 11.30%. The experimental non-woven fabrics had consistent weight and thickness, while exhibiting different properties in terms of tensile strength and air permeability, with Fabric C having the highest tensile strength and the lowest air permeability value.

Originality/value

The features of Curcuma longa fibre, obtained with the decortication process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising different compositions of Curcuma longa fibre and low-melt polyester fibre were produced. The tensile strength and air permeability properties of these fabrics were influenced by the composition of the fibres.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 4 January 2024

Ernest Mbamalu Ezeh, Ezeamaku U Luvia and Onukwuli O D

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has…

Abstract

Purpose

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has gained popularity in recent years due to their various advantages, including renewability, low cost, low density and biodegradability. Gourd fibre is one such natural fibre that has been identified as a potential reinforcement material for composites. However, it has low surface energy and hydrophobic nature, which makes it difficult to bond with matrix materials such as polyester. To overcome this problem, chemically adapted gourd fibre has been proposed as a solution. Chemical treatment is one of the most widely used methods to improve the properties of natural fibres. This research evaluates the feasibility and effectiveness of incorporating chemically adapted gourd fibre into polyester composites for industrial fabrication. The purpose of this study is to examine the application of chemically modified GF in the production of polyester composite engineering materials.

Design/methodology/approach

This work aims to evaluate the effectiveness of chemically adapted gourd fibre in improving the adhesion of gourd fibre with polyester resin in composite fabrication by varying the GF from 5 to 20 wt.%. The study involves the preparation of chemically treated gourd fibre through surface modification using sodium hydroxide (NaOH), permanganate (KMnO4) and acetic acid (CH3COOH) coupling agents. The mechanical properties of the modified fibre and composites were investigated. It was then characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to determine the changes in surface morphology and functional groups.

Findings

FTIR characterization showed that NaOH treatment caused cellulose depolymerization and caused a significant increase in the hydroxyl and carboxyl groups, showing improved surface functional groups; KMnO4 treatment oxidized the fibre surface and caused the formation of surface oxide groups; and acetic acid treatment induced changes that primarily affected the ester and hydroxyl groups. SEM study showed that NaOH treatment changed the surface morphology of the gourd fibre, introduced voids and reduced hydrophilic tendencies. The tensile strength of the modified gourd fibres increased progressively as the concentration of the modification chemicals increased compared to the untreated fibres.

Originality/value

This work presents the designed composite with density, mechanical properties and microstructure, showing remarkable improvements in the engineering properties. An 181.5% improvement in tensile strength and a 56.63% increase in flexural strength were got over that of the unreinforced polyester. The findings from this work will contribute to the understanding of the potential of chemically adapted gourd fibre as a reinforcement material for composites and provide insights into the development of sustainable composite materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 12 October 2023

Mashford Zenda, Paul Malan and Antonie Geyer

South Africa’s wool industry plays an important role in the agricultural sector. The wool industry provides a valuable source of income for farmers who practice sustainable…

Abstract

Purpose

South Africa’s wool industry plays an important role in the agricultural sector. The wool industry provides a valuable source of income for farmers who practice sustainable farming practices. However, wool farmers face numerous challenges, such as wool contamination, dirty wool and producing good-quality wool. Good-quality wool is determined by fibre diameter, clean yield, vegetable matter and staple length. This study aims to address these challenges.

Design/methodology/approach

A multiple regression analysis of price (R/kg) of White wool and Merino wool was applied to four variables fibre diameter: vegetable matter, clean yield and staple length. The analysis was based on the data for the 2009–2019 data from Cape Wools auctions.

Findings

Fibre diameter, clean yield and staple length, with exception of vegetable matter, made a statistically significant contribution to the determination of wool price after all other independent variables were controlled for (p < 0.05). A one-unit (micron) increase in fibre diameter resulted in a 0.404-unit decrease in wool price (R/kg). A one-unit (mm) increase in staple length resulted in a 0.022-unit increase in wool price (R/kg). There was no statistically significant association between vegetable matter and wool price. A one-unit increase in clean yield was associated with a 0.111-unit increase in wool price (R/kg).

Research limitations/implications

Since wool fleeces consist of the largest portion of wool shorn from sheep, it is important for wool farmers to focus on wool with low fibre diameter, high clean yield percentage, low percentage of vegetable matter content and good length of the wool.

Practical implications

Since wool fleeces consist of the largest portion of wool shorn from sheep, it is important for wool farmers to focus on wool with low fibre diameter, high clean yield percentage, low percentage of vegetable matter content and good length of the wool.

Social implications

In a developing country such as South Africa, this study is important for the following reason. It is understanding the wool characteristics that have the most significance influence on the determination of wool price for Merino wool and White wool might effectively help the wool farmers to adapt their production systems to improve the wool characteristics that determine wool price.

Originality/value

This study identified a need for a study to be conducted on all wool classes.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 November 2022

Ashis Mitra

The present study aims to demonstrate the application of newly developed combinative distance-based assessment (CODAS) approach for grading and selection of Tossa jute fibres…

Abstract

Purpose

The present study aims to demonstrate the application of newly developed combinative distance-based assessment (CODAS) approach for grading and selection of Tossa jute fibres, which possesses some unique features uncommon to other variants of multi-criteria decision-making (MCDM) method.

Design/methodology/approach

The CODAS method was used in this study to rank/grade ten candidate lots of Tossa fibres on the basis of six apposite jute fibre properties, namely, fibre defect, root content, fineness, strength, colour and density. These six fibre properties were considered as the six decision criteria, here, and they were assigned weights as determined previously by an earlier researcher using analytic hierarchy process. The grading of jute fibres was done based on a comprehensive single index known as the assessment scores (Hi), in descending order of magnitude.

Findings

Among the 10 Tossa jute lots, T2 was ranked 1 (top grade) because of the highest assessment score of 6.887, followed by T1 with Rank 2 (assessment score 1.830). Because of the least assessment score of −2.795, the candidate lot T4 was considered as the worst, and hence ranked 10. The overall ranking pattern given by the CODAS method was similar to the TOPSIS approach done by Ghosh and Das (2013). This study was supported by various sensitivity analyses to judge the efficacy of the present approach. No occurrence of rank reversal during the sensitivity analyses obviously corroborates the robustness and stability of the CODAS method.

Practical implications

Jute pricing is fixed solely by the quality for which grading of fibre is prerequisite. The traditional “Hand and Eye” method or Bureau of Indian Standards (BIS) system for jute grading is basically subjective assessment and need domain expertise. MCDM is reported as the most viable solution which gives due importance to the fibre parameters while grading the fibres based on a single index. The present study demonstrates the maiden application of CODAS to address the fibre grading problems for jute industries. This approach can also be extended to solve other decision problems of textile industry, in general.

Originality/value

CODAS is a recently developed exponent of MCDM. Uniqueness of the present study lies in the fact that this is the first ever application of CODAS in the domain of textile industry, in general, and jute industry, in particular. CODAS approach is very simple involving a few simple mathematical equations yet a potent tool of decision-making. This method possesses some features uncommon in other variants of MCDM. Moreover, the efficacy of CODAS method is investigated through various sensitivity analyses, which has been ignored in the earlier approaches.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 January 2024

Amanpreet Kaur Kharbanda, Kamal Raj Dasarathan, S.K. Sinha, T. Senthil Kumar and B. Senthil Kumar

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study…

39

Abstract

Purpose

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study aims to investigate the comfort and mechanical properties of these woven materials.

Design/methodology/approach

Taguchi L16 experimental design (5 factors and 4 levels) with response surface methodology tool was used to optimize mechanical and comfort characteristics. The yarn samples used in this study are cotton/banana with a blend ratio of 70:30. Fabric type (A), grams per square metre (GSM; B), yarn count (C), fabric thickness (D) and cloth cover factor (E) are the chosen process characteristics.

Findings

The highest tensile strength and tearing strength of the cotton/banana blended fabric samples were obtained as 326.3 N and 90.3 k.gf/cm, respectively. Similarly, the highest thermal conductivity and overall moisture management capacity values were found to be 0.6628 and 3.06 W/mK X10−4, respectively. The optimized process parameters for obtaining maximum mechanical properties were using canvas fabric structure, 182 GSM, 36s Ne yarn count, 0.48 mm fabric thickness and 23.5 cloth cover factor. Similarly, the optimized process parameters for obtaining maximum comfort properties were achieved using a twill fabric structure, 182 GSM, 32s Ne yarn count, 0.4 mm fabric thickness and 23 cloth cover factor.

Originality/value

In contrast to synthetic fabrics, banana fibre and its blended materials are significant ecological solutions for apparel and functional clothing. Products made from banana fibre are a sustainable and green alternative to conventional fabrics. Banana fibre obtained from the pseudostem of the plant has an appearance similar to ramie and bamboo fibres. Numerous studies showed that banana fibre could absorb significant moisture and be spun into yarn through ring and rotor spinning technology. On the other hand, this fibre can be easily combined with cotton, jute, wool and synthetic fibre. The present utilization of pseudostem of banana plant fibre is very minimal. This type of research improves the usability of bananas their blended fabrics as apparel and functional wear.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 27 June 2023

Ketshepileone Shiela Matlhoko, Jana Franie Vermaas, Natasha Cronjé and Sean van der Merwe

The South African wool industry is integral to the country's agricultural sector, particularly sheep farming and wool production. Small-scale farmers play a vital role in this…

Abstract

Purpose

The South African wool industry is integral to the country's agricultural sector, particularly sheep farming and wool production. Small-scale farmers play a vital role in this industry and contribute to employment and food security in rural communities. However, these farmers face numerous challenges, including a lack of funding, poor farming practices and difficulty selling their wool at fair prices. This study aims to address these challenges, the University of Free State launched a wool value chain project for small-scale farmers.

Design/methodology/approach

In this project, one of the studies conducted assessed the effectiveness of different detergents suitable for traditional wool scouring methods for small-scale farmers who lack access to sophisticated machinery. The investigation was conducted by scouring 160 wool samples using three different detergents and filtered water as a control. The wool samples were then evaluated for their cleanliness, brightness and fibre properties through a combination of scanning electron microscopy, spectrophotometry and statistical analysis at different scouring times (3, 10, 15 and 20 min, respectively).

Findings

The results showed that the combination of scouring time and the type of scouring solution used could significantly impact wool quality. It was found that using a combination of standard detergent or Woolwash as a scouring solution with a scouring time of 10–15 min resulted in the best outcome in terms of fibre property, wool colour and scouring loss.

Originality/value

This study demonstrated that traditional wool scouring methods could be an option for small-scale farmers and anyone who want to learn how to scour wool without expensive machinery to make wool products.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 April 2024

Vaishali Choubey, Serlene Tomar, Surbhi Yadav, Bhavana Gupta, Ankur Khare, Pradeep Kumar Singh and Somesh Kumar Meshram

The purpose of the study was to produce a healthier, convenient and traditional ready-to-eat (RTE) snack option with increased nutritional value, using spent hen meat, dietary…

Abstract

Purpose

The purpose of the study was to produce a healthier, convenient and traditional ready-to-eat (RTE) snack option with increased nutritional value, using spent hen meat, dietary fibre (DF) and simple technological methods. The product was designed to be stable without refrigeration and be easily adoptable by local self-help groups, rural women and youth and entrepreneurs in urban and semi-urban areas.

Design/methodology/approach

Conventional binder used for making snacks, i.e. rice flour was partially replaced by different sources of antioxidant DFs, i.e. oat flour (T1 – 10%), finger millet flour (T2 – 5%) and amaranth flour (T3 –15%) to prepare spent hen snack sticks (SHSS). The snacks were then packaged in low density polyethylene (LDPE) pouches and evaluated for their storage stability at ambient temperature for a period of 35 days. Their physico-chemical, sensory and microbiological quality was evaluated at a regular interval of 7 days. The proximate composition of developed SHSS was compared to commercially available snack products (chakli/murukku – snacks without meat).

Findings

The fibre-enriched SHSS showed significant improvement in nutritive value, as they contained more fibre (p = 0.001) and protein (p = 0.029) than control SHSS. When compared to commercially available snack product SHSS showed three-fold significant increase in protein (p = 0.000) and ash content (p = 0.001) and only 11%–12% total fat as compared to 31% fat in the market-available product. The most acceptable treatment in terms of overall sensory quality and nutritional aspects was T3; however, T2 was more shelf-stable during the storage period. The study showed that fibre-enriched snacks can be stored at ambient temperature for up to 35 days without substantial loss in physico-chemical, sensory and microbial quality. Hence, substituting rice flour with DFs can lead to the development of products with better sensory attributes and improved functionality.

Social implications

The simplicity of the product in terms of composition, machinery and low production costs makes it an easily adoptable one by small-scale entrepreneurs, especially those belonging to semi-urban areas.

Originality/value

Incorporation of spent hen meat, a relatively cheap but abundant source of protein, in RTE products can serve as an effective way to alleviate protein malnutrition, whereas addition of fibre further improves the functionality of the product. The methodology can be easily taken up by small-scale entrepreneurs and create a market for snack-based functional meat products.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 11 July 2023

Amal Mohamed El-Moursy, Zeinab Mohmed Abdel Mageid, Manar Yahia Ismail Abd El-Aziz, Nour Asser and Osama Hakeim

Wearing clothes requires specifications for feeling comfortable, derived from the fibres, fabrics and finishing properties. This study aims to deal with the effect of economic…

Abstract

Purpose

Wearing clothes requires specifications for feeling comfortable, derived from the fibres, fabrics and finishing properties. This study aims to deal with the effect of economic blends containing hollow fibres, bamboo and cotton/polyester waste on the mechanical properties of the produced fabrics and the appropriate end use.

Design/methodology/approach

This research included two blends: one consisted of cotton/polyester wastes blended with bamboo and the other to which Chorisia fibres were added. Two weft counts 10,6/1 Ne were made from each blend, which were used to produce four fabric samples (S1 Chorisia-free and S2 with Chorisia); additionally, another two samples were dyed that contain Chorisia (S3) from each count. The six samples were tested by Kawabata Evaluation System (KES).

Findings

The samples gave a good total hand value (THV) for use as men's winter suits, where the thicker count 6/1, with and without Chorisia had better properties, also both counts 6, 10/1 with dye. The hollow fibres affected the fabrics’ properties, including thickness, shear, bending, thermal conductivity and weight. Both blends had a positive effect on THV.

Research limitations/implications

Cotton/polyester waste, Chorisia and bamboo fibres were tested, and 2% Remazol Yellow GNL dye was used.

Practical implications

The ratio of blending, weft counts and dye affected the fabric’s properties, with consequences for the use of the Kawabata system and its applications.

Social implications

The fabrics used in this research may be considered to be economical and have good THV.

Originality/value

The study proved the usefulness of fabrics made of two blends. The Chorisia component may be seen as a good alternative to cotton fibres to reduce the cost of producing high-consumption winter suit fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 28 April 2023

SVKSV Krishna Kiran Poodipeddi, Amarthya Singampalli, Lalith Sai Madhav Rayala and Surya Sudarsan Naveen Ravula

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel…

Abstract

Purpose

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel is an essential element of the vehicle suspension system that supports the static and dynamic loads encountered during its motion. The rim provides a firm base to hold the tire and supports the wheel, and it is also one of the load-bearing elements in the entire automobile as the car's weight and occupants' weight act upon it. The wheel rim should be strong enough to withstand the load with such a background, ensuring vehicle safety, comfort and performance. The dimensions, shape, structure and material of the rim are crucial factors for studying vehicle handling characteristics that demand automobile designers' concern.

Design/methodology/approach

In the present study, solid models of three different wheel rims, namely, R-1, R-2 and R-3, designed for three different cars, are modelled in SOLIDWORKS. Different carbon composite materials of polyetheretherketone (PEEK), namely, PEEK 90 HMF 40, PEEK 450 CA 30, PEEK 450 GL 40 and carbon fibre reinforced polymer-unidirectional (CFRP-UD) are used as rim materials for conducting the structural and fatigue analysis using ANSYS Workbench.

Findings

The results thus obtained in the analyses are used to identify the better carbon fibre composite material for the wheel rim such that it gives better structural properties and less fatigue. The R-3 model rim has shown better structural properties and less fatigue with PEEK 90 HMF 40 material.

Originality/value

The carbon composite materials used in this study have shown promissory results that can be used as an alternative for aluminium, steel and other regular materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 October 2023

Junling Wu, Longfei Sun and Long Lin

This study aims to dye silk with natural pigments extract of Coreopsis tinctoria, by treating the fabrics with appropriate mordant under suitable dyeing conditions, to achieve…

22

Abstract

Purpose

This study aims to dye silk with natural pigments extract of Coreopsis tinctoria, by treating the fabrics with appropriate mordant under suitable dyeing conditions, to achieve good dyeing depth, fastness and ultraviolet (UV) protection.

Design/methodology/approach

Firstly, single factor experiments were used to determine the basic dyeing conditions of Coreopsis tinctoria. The optimal process conditions for direct dyeing were determined through orthogonal experiments. After that, the dyeing with mordant was used. Based on the previously determined optimal process conditions, silk fabrics were dyed with different mordanting methods, with different mordants and mordant dosages. The dyeing results were compared, in terms of the K/S values of the dyed fabrics, to determine the most appropriate dyeing conditions with mordant.

Findings

The extract of Coreopsis tinctoria can dye silk fabrics satisfactorily. Good dyeing depth and fastness can be obtained by using suitable dyeing methods and dyeing conditions, especially when using the natural mordant pomegranate rind and the rare earth mordant neodymium oxide. The silk fabrics dyed with Coreopsis tinctoria have good UV resistance, which allows a desirable finishing effect to be achieved while dyeing, using a safe and environmentally friendly method.

Research limitations/implications

The composition of Coreopsis tinctoria is complex, and the specific composition of colouring the silk fibre has not been determined. There are many factors that affect the dyeing experiment, which have an impact on the experimental results.

Practical implications

The results of this study may help expand the application of Coreopsis tinctoria beyond medicine.

Originality/value

To the best of the authors’ knowledge, this paper is the first report on dyeing silk with the extract of Coreopsis tinctoria achieving good dyeing results. Its depth of staining and staining fastness were satisfactory. Optimum dyeing method and dyeing conditions have been identified. The fabric dyed with Coreopsis tinctoria has good UV protection effect, which is conducive to improving the application value of the dyeing fabric. The findings help offer a new direction for the application of medicinal plants in the eco-friendly dyeing of silk.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 469