Search results

1 – 10 of over 1000
Open Access
Book part
Publication date: 4 May 2018

Rahmawati, Askura Nikmah, Nisrina and Yayuk Kurnia Risna

Purpose – This study was conducted to determine the effect of peel of Arabica coffee (PAC) with Win Prob Probiotic on crude fiber content and fiber fraction (neutral detergent…

Abstract

Purpose – This study was conducted to determine the effect of peel of Arabica coffee (PAC) with Win Prob Probiotic on crude fiber content and fiber fraction (neutral detergent fiber, NDF; acid detergent fiber, ADF; cellulose; hemicelluloses; and lignin). The hypothesis of this study is that PAC fermentation using Probiotic Win Prob can decrease the content of crude fiber and fiber fraction.

Design/Methodology/Approach – The research design applied was a factorial completely randomized design with three treatments and three replications. Factor A (probiotic dose) consisted of three doses: 2.5%, 5%, and 7%, in addition, there are three fermentation durations considered as factor B, which are 20, 30, and 40 days.

Findings – The result of this study indicates that the content of crude fiber and fiber fractions can decrease each amount of the variable of this study. The best treatment was obtained in A3B3 with 7% probiotic with 30 days of fermentation. Rough fiber PAC decreased up to 27.66% and NDF content decreased by 3.6%. Moreover, ADF content decreased up to 4.10%. The last lignin decreased by 18.75%.

Research Limitations/Implications – Only a small portion of coarse fiber and fiber fractions in PAC is fermented with Win Prob probiotics. So we can try other ways to reduce the coarse fiber and PAC fiber fractions such as the combination of ammonium and fermentation (amofer).

Originality/Value – The PAC has a high content of crude fiber and fiber fractions (NDF, ADF, cellulose, hemisellulose, and lignin), and so it is recommended as ruminants for feed ingredients.

Open Access
Article
Publication date: 22 May 2023

Peter G. Kelly, Benjamin H. Gallup and Joseph D. Roy-Mayhew

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on…

1110

Abstract

Purpose

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on a part have conflicting optimal orientations, the part is unavoidably compromised. This paper aims to demonstrate a strategy in which conflicting features can be functionally separated into “co-parts” which are individually aligned in an optimal orientation, selectively reinforced with continuous fiber, printed simultaneously and, finally, assembled into a composite part with substantially improved performance.

Design/methodology/approach

Several candidate parts were selected for co-part decomposition. They were printed as standard fused filament fabrication plastic parts, parts reinforced with continuous fiber in one plane and co-part assemblies both with and without continuous fiber reinforcement (CFR). All parts were loaded until failure. Additionally, parts representative of common suboptimally oriented features (“unit tests”) were similarly printed and tested.

Findings

CFR delivered substantial improvement over unreinforced plastic-only parts in both standard parts and co-part assemblies, as expected. Reinforced parts held up to 2.5x the ultimate load of equivalent plastic-only parts. The co-part strategy delivered even greater improvement, particularly when also reinforced with continuous fiber. Plastic-only co-part assemblies held up to 3.2x the ultimate load of equivalent plastic only parts. Continuous fiber reinforced co-part assemblies held up to 6.4x the ultimate load of equivalent plastic-only parts. Additionally, the thought process behind general co-part design is explored and a vision of simulation-driven automated co-part implementation is discussed.

Originality/value

This technique is a novel way to overcome one of the most common challenges preventing the functional use of additively manufactured parts. It delivers compelling performance with continuous carbon fiber reinforcement in 3D printed parts. Further study could extend the technique to any anisotropic manufacturing method, additive or otherwise.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 16 December 2022

Uchenna Luvia Ezeamaku, Chinyere Ezekannagha, Ochiagha I. Eze, Nkiru Odimegwu, Angela Nwakaudu, Amarachukwu Okafor, Innocent Ekuma and Okechukwu Dominic Onukwuli

The impact of potassium permanganate (KMnO4) treatment on the tensile strength of an alkali-treated pineapple leaf fiber (PALF) reinforced with tapioca-based bio resin (cassava…

745

Abstract

Purpose

The impact of potassium permanganate (KMnO4) treatment on the tensile strength of an alkali-treated pineapple leaf fiber (PALF) reinforced with tapioca-based bio resin (cassava starch) was studied.

Design/methodology/approach

The PALF was exposed to sodium hydroxide (NaOH) treatment in varying concentrations of 2.0, 3.7, 4.5 and 5.5g prior to the fiber treatment with KMnO4. The treated and untreated PALFs were reinforced with tapioca-based bio resin. Subsequently, they were subjected to Fourier transform infrared (FTIR) and tensile test analysis.

Findings

The FTIR analysis of untreated PALF revealed the presence of O-H stretch, N-H stretch, C=O stretch, C=O stretch and H-C-H bond. The tensile test result confirmed the highest tensile strength of 35N from fiber that was reinforced with 32.5g of cassava starch and treated with 1.1g of KMnO4. In comparison, the lowest tensile strength of 15N was recorded for fiber reinforced with 32.5g of cassava starch without KMnO4 treatment.

Originality/value

Based on the results, it could be deduced that despite the enhancement of bioresin (cassava starch) towards strength-impacting on the fibers, KMnO4 treatment on PALF is very vital for improved tensile strength of the fiber when compared to untreated fibers. Hence, KMnO4 treatment on alkali-treated natural fibers preceding reinforcement is imperative for bio-based fibers.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 3
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 12 October 2023

Mashford Zenda, Paul Malan and Antonie Geyer

South Africa’s wool industry plays an important role in the agricultural sector. The wool industry provides a valuable source of income for farmers who practice sustainable…

Abstract

Purpose

South Africa’s wool industry plays an important role in the agricultural sector. The wool industry provides a valuable source of income for farmers who practice sustainable farming practices. However, wool farmers face numerous challenges, such as wool contamination, dirty wool and producing good-quality wool. Good-quality wool is determined by fibre diameter, clean yield, vegetable matter and staple length. This study aims to address these challenges.

Design/methodology/approach

A multiple regression analysis of price (R/kg) of White wool and Merino wool was applied to four variables fibre diameter: vegetable matter, clean yield and staple length. The analysis was based on the data for the 2009–2019 data from Cape Wools auctions.

Findings

Fibre diameter, clean yield and staple length, with exception of vegetable matter, made a statistically significant contribution to the determination of wool price after all other independent variables were controlled for (p < 0.05). A one-unit (micron) increase in fibre diameter resulted in a 0.404-unit decrease in wool price (R/kg). A one-unit (mm) increase in staple length resulted in a 0.022-unit increase in wool price (R/kg). There was no statistically significant association between vegetable matter and wool price. A one-unit increase in clean yield was associated with a 0.111-unit increase in wool price (R/kg).

Research limitations/implications

Since wool fleeces consist of the largest portion of wool shorn from sheep, it is important for wool farmers to focus on wool with low fibre diameter, high clean yield percentage, low percentage of vegetable matter content and good length of the wool.

Practical implications

Since wool fleeces consist of the largest portion of wool shorn from sheep, it is important for wool farmers to focus on wool with low fibre diameter, high clean yield percentage, low percentage of vegetable matter content and good length of the wool.

Social implications

In a developing country such as South Africa, this study is important for the following reason. It is understanding the wool characteristics that have the most significance influence on the determination of wool price for Merino wool and White wool might effectively help the wool farmers to adapt their production systems to improve the wool characteristics that determine wool price.

Originality/value

This study identified a need for a study to be conducted on all wool classes.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 27 June 2023

Ketshepileone Shiela Matlhoko, Jana Franie Vermaas, Natasha Cronjé and Sean van der Merwe

The South African wool industry is integral to the country's agricultural sector, particularly sheep farming and wool production. Small-scale farmers play a vital role in this…

Abstract

Purpose

The South African wool industry is integral to the country's agricultural sector, particularly sheep farming and wool production. Small-scale farmers play a vital role in this industry and contribute to employment and food security in rural communities. However, these farmers face numerous challenges, including a lack of funding, poor farming practices and difficulty selling their wool at fair prices. This study aims to address these challenges, the University of Free State launched a wool value chain project for small-scale farmers.

Design/methodology/approach

In this project, one of the studies conducted assessed the effectiveness of different detergents suitable for traditional wool scouring methods for small-scale farmers who lack access to sophisticated machinery. The investigation was conducted by scouring 160 wool samples using three different detergents and filtered water as a control. The wool samples were then evaluated for their cleanliness, brightness and fibre properties through a combination of scanning electron microscopy, spectrophotometry and statistical analysis at different scouring times (3, 10, 15 and 20 min, respectively).

Findings

The results showed that the combination of scouring time and the type of scouring solution used could significantly impact wool quality. It was found that using a combination of standard detergent or Woolwash as a scouring solution with a scouring time of 10–15 min resulted in the best outcome in terms of fibre property, wool colour and scouring loss.

Originality/value

This study demonstrated that traditional wool scouring methods could be an option for small-scale farmers and anyone who want to learn how to scour wool without expensive machinery to make wool products.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 1 June 2023

Julia Solnier, Roland Gahler and Simon Wood

Background/Objectives: Protein-based meal replacements (MR) with viscous soluble fibre are known aids for weight loss. This study aims to compare the effects of new whey and vegan…

Abstract

Purpose

Background/Objectives: Protein-based meal replacements (MR) with viscous soluble fibre are known aids for weight loss. This study aims to compare the effects of new whey and vegan MR containing different amounts of PGX (PolyGlycopleX) on weight loss over 12 weeks, along with a calorie-restricted diet.

Design/methodology/approach

Subjects/Methods: Sixty-eight healthy adults of both sexes (53 women; 15 men; average age 47.1 years; BMI 31 ± 7.1 kg/m2 and weight 85.05 ± 23.3 kg) were recruited. Participants consumed a whey or vegan MR twice/d (5–10 g/day PGX) with a low-energy diet (1,200 kcal/day), over 12 weeks. Weight, height, waist and hip circumference were recorded (four time periods).

Findings

Results: Forty-four participants completed the study. Results showed significant reductions in average body weight and at week 12, whey group was [−7.7 kg ± 0.9 (8.3%), p < 0.001] and vegan group was [−4.5 kg ± 0.8 (6.2%), p < 0.001)]. All participants (n = 44; BMI 27 to 33 kg/m2) achieved significant reductions in body measurements from baseline to week 12; p < 0.001. Conclusions: Supplementation of protein-based MR with PGX and a balanced, low-energy diet, appears to be an effective approach for short-term weight loss.

Research limitations/implications

As the authors were evaluating if the MR as a whole (i.e. with PGX) caused weight loss from baseline over the 12 weeks, no comparators, i.e. just the MR without PGX, were used. Formulation of these new MRs resulted in a whey product with 5 g PGX and a vegan product with 2.5 g PGX. Only 2.5 g PGX could be formulated with the vegan protein due to taste and viscosity limitations. Study participants were not randomized and no control groups (e.g. no MR or MR without PGX but with energy restricted diet) were used. Furthermore, it is not clear whether the sort of protein alone or the combination with a higher amount of PGX (whey with 5 g PGX/serving vs vegan with 2.5 g PGX/serving) has contributed to these significant greater weight-loss effects. This was something the authors were testing, i.e. could only 2.5 g PGX/serving have an effect on weight loss for a vegan MR. These limitations would be somethings to evaluate in a subsequent randomized controlled study. Hence, the results of this study may serve as a good starting point for further sophisticated randomized controlled trials that can demonstrate causality – which the authors acknowledge as one of the fundamental limitations of an observational study design. Participants tracked their calories but adherence and compliance were self-assessed and they were encouraged to keep their exercise routine consistent throughout the study. Hence, these are further limitations. No control group was used in this study to observe the effect of the dietary intervention and/or physical activity on weight loss alone. However, a goal of the authors was to keep this study as close to a real-life situation as possible, where people would not be doing any of these measurements, to see if with minimal supervision or intervention, people can still lose weight and alter their body composition. Furthermore, differences in gender and the corresponding weight loss effects in response to MR-protein-based treatments could be evaluated in follow-up studies.

Practical implications

This study indicates that the consumption of protein-based (animal, whey or plant, pea protein) MR incorporating the highly soluble viscous PGX is beneficial for weight loss when combined with a healthy-balanced, calorie-restricted diet. MRs at either 2.5 g or 5 g per serving (RealEasyTM with PGX) proved to be a highly effective as a short-term solution for weight loss. The observed results are encouraging, however, further long-term studies (i.e. randomized clinical trials RCT) are needed to confirm the clinical relevance. RCTs should focus on the individual effects of PGX and/or the different protein sources used in MRs, on weight loss and the maintenance of the reduced body weight, and should measure detailed blood parameters (lipid profiles, glucose etc.) as well as collect detailed exercise and food consumption diaries.

Originality/value

To the authors’ knowledge, this is the first study comparing a whey versus vegan, (as pea) protein-based MR that is supplemented with fibre PGX; thus, this work adds information to the already existing literature on fibre (such as PGX) and MRs regarding their combined weight loss effects. The purpose of this study was to observe if the novel protein-based (either whey or vegan versions) MR RealEasyTM with PGX at 2.5 or 5 g in addition to a calorie-restricted diet (total of 1,200 kcal/day) would aid in weight loss in individuals over a 12-weeks period. Adding increasing amounts of whey protein and soluble fibre can help reduce subsequent ad libitum energy intake which could help adherence to energy restricted diets, but whether similar effects are seen with vegan protein is unclear – this study does aim to address this.

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Open Access
Article
Publication date: 30 September 2019

Andrea Mantelli, Marinella Levi, Stefano Turri and Raffaella Suriano

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will…

2764

Abstract

Purpose

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will enable the rapid fabrication of environmentally sustainable structures with complex shapes and good mechanical properties. These three-dimensional printed objects will have several application fields, such as street furniture and urban renewal, thus promoting a circular economy model.

Design/methodology/approach

For this purpose, a low-cost liquid deposition modeling technology was used to extrude photo-curable and thermally curable composite inks, composed of an acrylate-based resin loaded with different amounts of mechanically recycled glass fiber reinforced composites (GFRCs). Rheological properties of the extruded inks and their printability window and the conversion of cured composites after an ultraviolet light (UV) assisted extrusion were investigated. In addition, tensile properties of composites remanufactured by this UV-assisted technology were studied.

Findings

A printability window was found for the three-dimensional printable GFRCs inks. The formulation of the composite printable inks was optimized to obtain high quality printed objects with a high content of recycled GFRCs. Tensile tests also showed promising mechanical properties for printed GFRCs obtained with this approach.

Originality/value

The novelty of this paper consists in the remanufacturing of GFRCs by the three-dimensional printing technology to promote the implementation of a circular economy. This study shows the feasibility of this approach, using mechanically recycled EoL GFRCs, composed of a thermoset polymer matrix, which cannot be melted as in case of thermoplastic-based composites. Objects with complex shapes were three-dimensional printed and presented here as a proof-of-concept.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Details

Industrial Robot: An International Journal, vol. 27 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 April 2000

268

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 4 December 2017

Natalie Ishmael, Anura Fernando, Sonja Andrew and Lindsey Waterton Taylor

This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of…

6930

Abstract

Purpose

This paper aims to provide an overview of the current manufacturing methods for three-dimensional textile preforms while providing experimental data on the emerging techniques of combining yarn interlocking with yarn interlooping.

Design/methodology/approach

The paper describes the key textile technologies used for composite manufacture: braiding, weaving and knitting. The various textile preforming methods are suited to different applications; their capabilities and end performance characteristics are analysed.

Findings

Such preforms are used in composites in a wide range of industries, from aerospace to medical and automotive to civil engineering. The paper highlights how the use of knitting technology for preform manufacture has gained wider acceptance due to its flexibility in design and shaping capabilities. The tensile properties of glass fibre knit structures containing inlay yarns interlocked between knitted loops are given, highlighting the importance of reinforcement yarns.

Originality/value

The future trends of reinforcement yarns in knitted structures for improved tensile properties are discussed, with initial experimental data.

Details

Research Journal of Textile and Apparel, vol. 21 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of over 1000