Search results

1 – 10 of over 15000
Article
Publication date: 7 June 2018

Longbiao Li

This paper aims to predict fatigue life and fatigue limit of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e. unidirectional, cross-ply, 2D-…

Abstract

Purpose

This paper aims to predict fatigue life and fatigue limit of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e. unidirectional, cross-ply, 2D-, 2.5D- and 3D-woven, at room and elevated temperatures.

Design/methodology/approach

Under cyclic loading, matrix multicracking and interface debonding occur upon first loading to fatigue peak stress, and the interface wear appears with increasing cycle number, leading to degradation of the interface shear stress and fibers strength. The relationships between fibers fracture, cycle number, fatigue peak stress and interface wear damage mechanism have been established based on the global load sharing (GLS) criterion. The evolution of fibers broken fraction versus cycle number curves of fiber-reinforced CMCs at room and elevated temperatures have been obtained.

Findings

The predicted fatigue life S–N curve can be divided into two regions, i.e. the Region I controlled by the degradation of interface shear stress and fibers strength and the Region II controlled by the degradation of fibers strength.

Practical/implications

The proposed approach can be used to predict the fatigue life and fatigue limit of unidirectional, cross-ply, 2D-, 2.5D- and 3D-woven CMCs under cyclic loading.

Originality/value

The fatigue damage mechanisms and fibers failure model were combined together to predict the fatigue life and fatigue limit of fiber-reinforced CMCs with different fiber preforms.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 June 2010

C. Subramanian and S. Senthilvelan

The purpose of this paper is to understand the influence of reinforced fiber length over material‐plastic energy of deformation, clogging, crystallinity, and correlates with the…

1225

Abstract

Purpose

The purpose of this paper is to understand the influence of reinforced fiber length over material‐plastic energy of deformation, clogging, crystallinity, and correlates with the friction and wear behavior of polypropylene (PP) composites under multi‐pass abrasive condition. Also to identify wear mechanisms of glass fiber reinforced PP materials under various abrasive grit sizes and normal loads.

Design/methodology/approach

Multi‐pass abrasive wear tests were performed for unreinforced, short, and long glass fiber reinforced PP (LFPP) on a pin on disc machine under three different normal loads and two different abrasive grit sizes for a constant sliding velocity. Measured wear volume was correlated with the plastic energy of deformation by carrying out a constant load indentation test using servo hydraulic fatigue test system. Clogging behavior of test materials was examined with the aid of online wear measurement and wear morphology. Test materials crystallinity was estimated with the aid of X‐ray diffraction investigation and correlated with abrasive wear performance.

Findings

Fiber reinforcement in a PP material is found to improve the plastic deformation energy and crystallinity which results in improved abrasive resistance of the material. Increase in reinforced fiber length is found to improve the material cohesive energy and hence the wear resistance. Reinforcement is found to alter the material clogging behavior under multi‐pass condition. Fiber reinforcement is found to reduce the material coefficient of friction, and increase in reinforced fiber length further reduces the frictional coefficient.

Research limitations/implications

Friction wear tests using pin on disc equipment is carried out in the present investigation. However, in practice, part geometry may not be always equivalent to simple pin on disc configuration.

Practical implications

The paper's investigation results could help to improve the utilization of LFPP material in many structural applications.

Originality/value

Influence of reinforced fiber length over multi‐pass abrasive wear performance of thermoplastic material, and online wear measurement to substantiate clogging behavior is unique in the present multi‐pass abrasive investigation.

Details

Industrial Lubrication and Tribology, vol. 62 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 1984

Michael Koenig

Fiber optics has the capability to dramatically increase telecommunications capability and lower costs. This article examines fiber optic technology, explains some of the key…

Abstract

Fiber optics has the capability to dramatically increase telecommunications capability and lower costs. This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world.

Details

Library Hi Tech, vol. 2 no. 1
Type: Research Article
ISSN: 0737-8831

Article
Publication date: 29 April 2014

Shuling Cui

Based on clarifying the structural difference between jade fibre and general polyester fibre, this paper aims to study the dyeing properties and dyeing adsorption mechanism of…

Abstract

Purpose

Based on clarifying the structural difference between jade fibre and general polyester fibre, this paper aims to study the dyeing properties and dyeing adsorption mechanism of jade fibre with disperse dye and cationic dye.

Design/methodology/approach

The chemical structure and microstructure of jade fibre were briefly explained comparing with ordinary polyester fibre. The dyeing rate curve and dyeing adsorption isotherm of disperse dyes and cationic dyes on jade fibre were, respectively, studied. The dyeing uptake, dyeing absorption mechanism, and the main dyeing process parameters were proposed.

Findings

Jade fibre can be dyed with cationic dye and disperse dye. The suitable exhaust dyeing process is 110°C and 40 minutes for disperse dye, 100°C and 60 minutes for cationic dye. The dyeing uptake on jade fibre with both disperse dyes or cationic dyes is much higher than that on general polyester fibre and acrylic fibre, and the dyeing adsorption mechanism belongs to the combination of Langmuir and Nernst adsorption for disperse dyes and Langmuir adsorption for cationic dyes. Comparing with ordinary polyester fibre, jade fibre has the advantage of low temperature dyeing and reduced effluent, as is significant to energy-saving and emission reduction.

Originality/value

Jade fibre is a new type of modified polyester fibre with the function of health protection and energy conservation. There are little technical data in the literature at present about the dyeing property of jade fibre.

Details

Pigment & Resin Technology, vol. 43 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 August 2019

Giridharan R., Raatan V.S. and Jenarthanan M.P.

The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried…

Abstract

Purpose

The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried out as per ASTM standards to find the mechanical properties. Further, fractured surface of the specimen is subjected to morphological study.

Design/methodology/approach

Composite samples were prepared according to ASTM standards and were subjected to tensile and flexural loads. The fractured surfaces of the specimens were examined directly under scanning electron microscope.

Findings

From the experiment, it was found that the main factors that influence the properties of composite are fiber length and content. The optimum fiber length and weight ratio are 15 mm and 16 percent, respectively, for bamboo fiber/epoxy composite. Hence, the prediction of optimum fiber length and content becomes important, so that composite can be prepared with best mechanical properties. The investigation revealed the suitability of bamboo fiber as an effective reinforcement in epoxy matrix.

Practical implications

As bamboo fibers are biodegradable, recyclable, light weight and so on, their applications are numerous. They are widely used in automotive components, aerospace parts, sporting goods and building industry. With this scenario, the obtained result of bamboo fiber reinforced composites is not ignorable and could be of potential use, since it leads to harnessing of available natural fibers and their composites rather than synthetic fibers.

Originality/value

This work enlists the effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite, which has not been attempted so far.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 April 2017

Shu Yang, Caijin Zhang and Xiaojun Shen

The purpose of this paper is to clarify how the micro-structure and -properties of wool fibers influence the pilling property of woolen fabrics.

Abstract

Purpose

The purpose of this paper is to clarify how the micro-structure and -properties of wool fibers influence the pilling property of woolen fabrics.

Design/methodology/approach

The fuzzing and pilling property of woolen fabrics was investigated, based on micro-scale including basic structural characteristics of wool fibers, wool scale topography and surface friction, etc. Scanning electron microscope was used to analyze wool fiber structure; frictional coefficients were measured by capstan method. Then three different kinds of wool fibers are spun into yarns, then knitted into woolen fabrics, whose pilling grade were estimated by means of Pillbox method.

Findings

Results show that the finer the fiber, the fabric pilling degree will be higher; the shorter the fiber, the fabric’s pilling is more serious; the number of pilling is decreasing with the increasing number of crimp; the longer the scales, the better anti-pilling property of fabrics, while the larger the scale thickness, the worse the anti-pilling property; and initially, with the increasing DFEs, fabrics are not easy to pilling, however, there exists a critical value.

Originality/value

Fuzzing and pilling property of woolen fabrics are affected by number of factors, including raw fibers, yarns, fabric tissue and finishing process, etc. In this paper, the authors exclude the influence of yarns’ parameter and fabrics’ tissue, etc., but focus on the micro-structure and -properties of raw wool fibers; and establish a direct connection between fabrics’ pilling property and fibers’ parameters.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 May 2021

Mohd Fadzli Bin Abdollah, Hilmi Amiruddin and Mohamad Jabbar Nordin

This study aims to scrutinise the impact of fibre length and its composition on the tribological attributes of oil palm fibre (OPF) polymeric composite as an alternative brake…

Abstract

Purpose

This study aims to scrutinise the impact of fibre length and its composition on the tribological attributes of oil palm fibre (OPF) polymeric composite as an alternative brake friction material.

Design/methodology/approach

Fabrication of the sample was conducted by using a hot-compression method. The tribological test was carried out by deploying a ball-on-disk tribometer. Analysis of the data was then done by using the Taguchi approach as well as analysis of variance.

Findings

The results indicated that all design variables (fibre composition, length and treatment) are not statistically significant, as all p-values are greater than 0.05. Remarkably, irrespective of the fibre treatment, the wear rate and coefficient of friction (COF) distribution suggested that a smaller fibre length with a high fibre composition might enhance the composite’s tribological performance with COF of 0.4 and wear rate below than 1 × 10–9 mm3/Nm. The predominant wear mechanisms were identified as micro-cracks, fine grooves and fibre debonding.

Research limitations/implications

In this study, all-inclusive scrutiny needs to be carried out for further exploration.

Originality/value

The main contribution and novelty of this study are opening a new perspective on the formulation of new substances from bio-based material (i.e. OPF) that possess superior tribological characteristics for friction-based applications.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 January 2017

Chuncheng Yang, Xiaoyong Tian, Tengfei Liu, Yi Cao and Dichen Li

Continuous fiber reinforced thermoplastic composites (CFRTPCs) are becoming more significant in industrial applications but are limited by the high cost of molds, the…

8279

Abstract

Purpose

Continuous fiber reinforced thermoplastic composites (CFRTPCs) are becoming more significant in industrial applications but are limited by the high cost of molds, the manufacturing boundedness of complex constructions and the inability of special fiber alignment. The purpose of this paper is to put forward a novel three-dimensional (3D) printing process for CFRTPCs to realize the low-cost rapid fabrication of complicated composite components.

Design/methodology/approach

For this purpose, the mechanism of the proposed process, which consists of the thermoplastic polymer melting, the continuous fiber hot-dipping and the impregnated composites extruding, was investigated. A 3D printing equipment for CFRTPCs with a novel composite extrusion head was developed, and some composite samples have been fabricated for several mechanical tests. Moreover, the interface performance was clarified with scanning electron microscopy images.

Findings

The results showed that the flexural strength and the tensile strength of these 10 Wt.% continuous carbon fiber (CCF)/acrylonitrile-butadiene-styrene (ABS) specimens were improved to 127 and 147 MPa, respectively, far greater than the one of ABS parts and close to the one of CCF/ABS (injection molding) with the same fiber content. Moreover, these test results also exposed the very low interlaminar shear strength (only 2.81 MPa) and the inferior interface performance. These results were explained by the weak meso/micro/nano scale interfaces in the 3D printed composite parts.

Originality/value

The 3D printing process for CFRTPCs with its controlled capabilities for the orientation and distribution of fiber has great potential for manufacturing of load-bearing composite parts in the industrial circle.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 1985

Roger P. Main

The use of fibre optic sensors is a relatively new development but the future applications are enormous

Abstract

The use of fibre optic sensors is a relatively new development but the future applications are enormous

Details

Sensor Review, vol. 5 no. 3
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 13 May 2019

Roselita Fragoudakis

Determining fiber orientations around geometric discontinuities is challenging and simultaneously crucial when designing laminates against failure. The purpose of this paper is to…

Abstract

Purpose

Determining fiber orientations around geometric discontinuities is challenging and simultaneously crucial when designing laminates against failure. The purpose of this paper is to present an approach for selecting the fiber orientations in the vicinity of a geometric discontinuity; more specifically round holes with edge cracks. Maximum stresses in the discontinuity region are calculated using Classical Lamination Theory (CLT) and the stress concentration factor for the aforementioned condition. The minimum moment to cause failure in a lamina is estimated using the Tsai–Hill and Tsai–Wu failure theories for a symmetric general stacking laminate. Fiber orientations around the discontinuity are obtained using the Tsai–Hill failure theory.

Design/methodology/approach

The current research focuses on a general stacking sequence laminate under three-point bending conditions. The laminate material is S2 fiber glass/epoxy. The concepts of mode I stress intensity factor and plastic zone radius are applied to decide the radius of the plastic zone, and stress concentration factor that multiplies the CLT stress distribution in the vicinity of the discontinuity. The magnitude of the minimum moment to cause failure in each ply is then estimated using the Tsai–Hill and Tsai–Wu failure theories, under the aforementioned stress concentration.

Findings

The findings of the study are as follows: it confirms the conclusions of previous research that the size and shape of the discontinuity have a significant effect on determining such orientations; the dimensions of the laminate and laminae not only affect the CLT results, but also the effect of the discontinuity in these results; and each lamina depending on its position in the laminate will have a different minimum load to cause failure and consequently, a different fiber orientation around the geometric discontinuity.

Originality/value

This paper discusses an important topic for the manufacturing and design against failure of Glass Fiber Reinforced Plastic (GFRP) laminated structures. The topic of introducing geometric discontinuities in unidirectional GFRP laminates is still a challenging one. This paper addresses these issues under 3pt bending conditions, a load condition rarely approached in literature. Therefore, it presents a fairly simple approach to strengthen geometric discontinuity regions without discontinuing fibers.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 15000