Search results

1 – 3 of 3
Article
Publication date: 5 May 2022

Russo Swart, Feras Korkees, Peter Dorrington and Joshua Thurman

Composites 3D printing has the potential to replace the conventional manufacturing processes for engineering applications because it allows for the manufacturing of complex shapes…

Abstract

Purpose

Composites 3D printing has the potential to replace the conventional manufacturing processes for engineering applications because it allows for the manufacturing of complex shapes with the possibility of reducing the manufacturing cost. This paper aims to analyse the performance of 3D printed fibre reinforced polymer composites to investigate the energy absorption capabilities and the residual properties before and after impact.

Design/methodology/approach

Various composites composed of carbon fibres and Kevlar fibres embedded into both Onyx and nylon matrix were printed using Markforged-Two 3D printers. Specimens with different fibre orientations and fibre volume fractions (Vf) were printed. A drop-weight impact test was performed at energies of 2, 5, 8 and 10 J. Flexural testing was performed to evaluate the flexural strength, flexural modulus and absorbed energy under bending (AEUB) before and after impact. Additionally, 3D printed carbon fibre composites were tested at two different temperatures to study their behaviour under room and sub-ambient temperatures. Failure modes were investigated using optical and high depth of field microscopes for all 3D printed composite samples.

Findings

Kevlar/nylon composites with a unidirectional lay-up and 50% Vf exhibited the most prominent results for AEUB at room temperature. The high-Vf carbon fibre composite showed the highest ultimate strength and modulus and performed best at both temperature regimes.

Originality/value

The work, findings and testing produced in this paper are entirely original with the objective to provide further understanding of 3D printed composites and its potential for use in many applications.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 February 2020

Feras Korkees, James Allenby and Peter Dorrington

3D printing of composites has a high degree of design freedom, which allows for the manufacture of complex shapes that cannot be achieved with conventional manufacturing…

Abstract

Purpose

3D printing of composites has a high degree of design freedom, which allows for the manufacture of complex shapes that cannot be achieved with conventional manufacturing processes. This paper aims to assess the design variables that might affect the mechanical properties of 3D-printed fibre-reinforced composites.

Design/methodology/approach

Markforged Mark-Two printers were used to manufacture samples using nylon 6 and carbon fibres. The effect of fibre volume fraction, fibre layer location and fibre orientation has been studied using three-point flexural testing.

Findings

The flexural strength and stiffness of the 3D-printed composites increased with increasing the fibre volume fraction. The flexural properties were altered by the position of the fibre layers. The highest strength and stiffness were observed with the reinforcement evenly distributed about the neutral axis of the sample. Moreover, unidirectional fibres provided the best flexural performance compared to the other orientations. 3D printed composites also showed various failure modes under bending loads.

Originality/value

Despite multiple studies available on 3D-printed composites, there does not seem to be a clear understanding and consensus on how the location of the fibre layers can affect the mechanical properties and printing versatility. Therefore, this study covered this design parameter and evaluated different locations in terms of mechanical properties and printing characteristics. This is to draw final conclusions on how 3D printing may be used to manufacture cost-effective, high-quality parts with excellent mechanical performance.

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 3 of 3