Search results

1 – 10 of over 16000
Article
Publication date: 15 January 2024

Faris Elghaish, Sandra Matarneh, Essam Abdellatef, Farzad Rahimian, M. Reza Hosseini and Ahmed Farouk Kineber

Cracks are prevalent signs of pavement distress found on highways globally. The use of artificial intelligence (AI) and deep learning (DL) for crack detection is increasingly…

Abstract

Purpose

Cracks are prevalent signs of pavement distress found on highways globally. The use of artificial intelligence (AI) and deep learning (DL) for crack detection is increasingly considered as an optimal solution. Consequently, this paper introduces a novel, fully connected, optimised convolutional neural network (CNN) model using feature selection algorithms for the purpose of detecting cracks in highway pavements.

Design/methodology/approach

To enhance the accuracy of the CNN model for crack detection, the authors employed a fully connected deep learning layers CNN model along with several optimisation techniques. Specifically, three optimisation algorithms, namely adaptive moment estimation (ADAM), stochastic gradient descent with momentum (SGDM), and RMSProp, were utilised to fine-tune the CNN model and enhance its overall performance. Subsequently, the authors implemented eight feature selection algorithms to further improve the accuracy of the optimised CNN model. These feature selection techniques were thoughtfully selected and systematically applied to identify the most relevant features contributing to crack detection in the given dataset. Finally, the authors subjected the proposed model to testing against seven pre-trained models.

Findings

The study's results show that the accuracy of the three optimisers (ADAM, SGDM, and RMSProp) with the five deep learning layers model is 97.4%, 98.2%, and 96.09%, respectively. Following this, eight feature selection algorithms were applied to the five deep learning layers to enhance accuracy, with particle swarm optimisation (PSO) achieving the highest F-score at 98.72. The model was then compared with other pre-trained models and exhibited the highest performance.

Practical implications

With an achieved precision of 98.19% and F-score of 98.72% using PSO, the developed model is highly accurate and effective in detecting and evaluating the condition of cracks in pavements. As a result, the model has the potential to significantly reduce the effort required for crack detection and evaluation.

Originality/value

The proposed method for enhancing CNN model accuracy in crack detection stands out for its unique combination of optimisation algorithms (ADAM, SGDM, and RMSProp) with systematic application of multiple feature selection techniques to identify relevant crack detection features and comparing results with existing pre-trained models.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 8 September 2022

Ziming Zeng, Tingting Li, Jingjing Sun, Shouqiang Sun and Yu Zhang

The proliferation of bots in social networks has profoundly affected the interactions of legitimate users. Detecting and rejecting these unwelcome bots has become part of the…

Abstract

Purpose

The proliferation of bots in social networks has profoundly affected the interactions of legitimate users. Detecting and rejecting these unwelcome bots has become part of the collective Internet agenda. Unfortunately, as bot creators use more sophisticated approaches to avoid being discovered, it has become increasingly difficult to distinguish social bots from legitimate users. Therefore, this paper proposes a novel social bot detection mechanism to adapt to new and different kinds of bots.

Design/methodology/approach

This paper proposes a research framework to enhance the generalization of social bot detection from two dimensions: feature extraction and detection approaches. First, 36 features are extracted from four views for social bot detection. Then, this paper analyzes the feature contribution in different kinds of social bots, and the features with stronger generalization are proposed. Finally, this paper introduces outlier detection approaches to enhance the ever-changing social bot detection.

Findings

The experimental results show that the more important features can be more effectively generalized to different social bot detection tasks. Compared with the traditional binary-class classifier, the proposed outlier detection approaches can better adapt to the ever-changing social bots with a performance of 89.23 per cent measured using the F1 score.

Originality/value

Based on the visual interpretation of the feature contribution, the features with stronger generalization in different detection tasks are found. The outlier detection approaches are first introduced to enhance the detection of ever-changing social bots.

Details

Data Technologies and Applications, vol. 57 no. 2
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 3 November 2020

Femi Emmanuel Ayo, Olusegun Folorunso, Friday Thomas Ibharalu and Idowu Ademola Osinuga

Hate speech is an expression of intense hatred. Twitter has become a popular analytical tool for the prediction and monitoring of abusive behaviors. Hate speech detection with…

Abstract

Purpose

Hate speech is an expression of intense hatred. Twitter has become a popular analytical tool for the prediction and monitoring of abusive behaviors. Hate speech detection with social media data has witnessed special research attention in recent studies, hence, the need to design a generic metadata architecture and efficient feature extraction technique to enhance hate speech detection.

Design/methodology/approach

This study proposes a hybrid embeddings enhanced with a topic inference method and an improved cuckoo search neural network for hate speech detection in Twitter data. The proposed method uses a hybrid embeddings technique that includes Term Frequency-Inverse Document Frequency (TF-IDF) for word-level feature extraction and Long Short Term Memory (LSTM) which is a variant of recurrent neural networks architecture for sentence-level feature extraction. The extracted features from the hybrid embeddings then serve as input into the improved cuckoo search neural network for the prediction of a tweet as hate speech, offensive language or neither.

Findings

The proposed method showed better results when tested on the collected Twitter datasets compared to other related methods. In order to validate the performances of the proposed method, t-test and post hoc multiple comparisons were used to compare the significance and means of the proposed method with other related methods for hate speech detection. Furthermore, Paired Sample t-Test was also conducted to validate the performances of the proposed method with other related methods.

Research limitations/implications

Finally, the evaluation results showed that the proposed method outperforms other related methods with mean F1-score of 91.3.

Originality/value

The main novelty of this study is the use of an automatic topic spotting measure based on naïve Bayes model to improve features representation.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 28 December 2023

Ankang Ji, Xiaolong Xue, Limao Zhang, Xiaowei Luo and Qingpeng Man

Crack detection of pavement is a critical task in the periodic survey. Efficient, effective and consistent tracking of the road conditions by identifying and locating crack…

Abstract

Purpose

Crack detection of pavement is a critical task in the periodic survey. Efficient, effective and consistent tracking of the road conditions by identifying and locating crack contributes to establishing an appropriate road maintenance and repair strategy from the promptly informed managers but still remaining a significant challenge. This research seeks to propose practical solutions for targeting the automatic crack detection from images with efficient productivity and cost-effectiveness, thereby improving the pavement performance.

Design/methodology/approach

This research applies a novel deep learning method named TransUnet for crack detection, which is structured based on Transformer, combined with convolutional neural networks as encoder by leveraging a global self-attention mechanism to better extract features for enhancing automatic identification. Afterward, the detected cracks are used to quantify morphological features from five indicators, such as length, mean width, maximum width, area and ratio. Those analyses can provide valuable information for engineers to assess the pavement condition with efficient productivity.

Findings

In the training process, the TransUnet is fed by a crack dataset generated by the data augmentation with a resolution of 224 × 224 pixels. Subsequently, a test set containing 80 new images is used for crack detection task based on the best selected TransUnet with a learning rate of 0.01 and a batch size of 1, achieving an accuracy of 0.8927, a precision of 0.8813, a recall of 0.8904, an F1-measure and dice of 0.8813, and a Mean Intersection over Union of 0.8082, respectively. Comparisons with several state-of-the-art methods indicate that the developed approach in this research outperforms with greater efficiency and higher reliability.

Originality/value

The developed approach combines TransUnet with an integrated quantification algorithm for crack detection and quantification, performing excellently in terms of comparisons and evaluation metrics, which can provide solutions with potentially serving as the basis for an automated, cost-effective pavement condition assessment scheme.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 4 June 2020

Moruf Akin Adebowale, Khin T. Lwin and M. A. Hossain

Phishing attacks have evolved in recent years due to high-tech-enabled economic growth worldwide. The rise in all types of fraud loss in 2019 has been attributed to the increase…

1394

Abstract

Purpose

Phishing attacks have evolved in recent years due to high-tech-enabled economic growth worldwide. The rise in all types of fraud loss in 2019 has been attributed to the increase in deception scams and impersonation, as well as to sophisticated online attacks such as phishing. The global impact of phishing attacks will continue to intensify, and thus, a more efficient phishing detection method is required to protect online user activities. To address this need, this study focussed on the design and development of a deep learning-based phishing detection solution that leveraged the universal resource locator and website content such as images, text and frames.

Design/methodology/approach

Deep learning techniques are efficient for natural language and image classification. In this study, the convolutional neural network (CNN) and the long short-term memory (LSTM) algorithm were used to build a hybrid classification model named the intelligent phishing detection system (IPDS). To build the proposed model, the CNN and LSTM classifier were trained by using 1m universal resource locators and over 10,000 images. Then, the sensitivity of the proposed model was determined by considering various factors such as the type of feature, number of misclassifications and split issues.

Findings

An extensive experimental analysis was conducted to evaluate and compare the effectiveness of the IPDS in detecting phishing web pages and phishing attacks when applied to large data sets. The results showed that the model achieved an accuracy rate of 93.28% and an average detection time of 25 s.

Originality/value

The hybrid approach using deep learning algorithm of both the CNN and LSTM methods was used in this research work. On the one hand, the combination of both CNN and LSTM was used to resolve the problem of a large data set and higher classifier prediction performance. Hence, combining the two methods leads to a better result with less training time for LSTM and CNN architecture, while using the image, frame and text features as a hybrid for our model detection. The hybrid features and IPDS classifier for phishing detection were the novelty of this study to the best of the authors' knowledge.

Details

Journal of Enterprise Information Management, vol. 36 no. 3
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 5 June 2017

Eugene Yujun Fu, Hong Va Leong, Grace Ngai and Stephen C.F. Chan

Social signal processing under affective computing aims at recognizing and extracting useful human social interaction patterns. Fight is a common social interaction in real life…

Abstract

Purpose

Social signal processing under affective computing aims at recognizing and extracting useful human social interaction patterns. Fight is a common social interaction in real life. A fight detection system finds wide applications. This paper aims to detect fights in a natural and low-cost manner.

Design/methodology/approach

Research works on fight detection are often based on visual features, demanding substantive computation and good video quality. In this paper, the authors propose an approach to detect fight events through motion analysis. Most existing works evaluated their algorithms on public data sets manifesting simulated fights, where the fights are acted out by actors. To evaluate real fights, the authors collected videos involving real fights to form a data set. Based on the two types of data sets, the authors evaluated the performance of their motion signal analysis algorithm, which was then compared with the state-of-the-art approach based on MoSIFT descriptors with Bag-of-Words mechanism, and basic motion signal analysis with Bag-of-Words.

Findings

The experimental results indicate that the proposed approach accurately detects fights in real scenarios and performs better than the MoSIFT approach.

Originality/value

By collecting and annotating real surveillance videos containing real fight events and augmenting with well-known data sets, the authors proposed, implemented and evaluated a low computation approach, comparing it with the state-of-the-art approach. The authors uncovered some fundamental differences between real and simulated fights and initiated a new study in discriminating real against simulated fight events, with very good performance.

Details

International Journal of Pervasive Computing and Communications, vol. 13 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 24 March 2021

Zishuo Han, Chunping Wang and Qiang Fu

The purpose of this paper is to use the most popular deep learning algorithm to complete the vehicle detection in the urban area of MiniSAR image, and provide reliable means for…

Abstract

Purpose

The purpose of this paper is to use the most popular deep learning algorithm to complete the vehicle detection in the urban area of MiniSAR image, and provide reliable means for ground monitoring.

Design/methodology/approach

An accurate detector called the rotation region-based convolution neural networks (CNN) with multilayer fusion and multidimensional attention (M2R-Net) is proposed in this paper. Specifically, M2R-Net adopts the multilayer feature fusion strategy to extract feature maps with more extensive information. Next, the authors implement the multidimensional attention network to highlight target areas. Furthermore, a novel balanced sampling strategy for hard and easy positive-negative samples and a global balanced loss function are applied to deal with spatial imbalance and objective imbalance. Finally, rotation anchors are used to predict and calibrate the minimum circumscribed rectangle of vehicles.

Findings

By analyzing many groups of experiments, the validity and universality of the proposed model are verified. More importantly, comparisons with SSD, LRTDet, RFCN, DFPN, CMF-RCNN, R3Det, SCRDet demonstrate that M2R-Net has state-of-the-art detection performance.

Research limitations/implications

The progress in the field of MiniSAR application has been slow due to strong speckle noise, phase error, complex environments and a low signal-to-noise ratio. In addition, four kinds of imbalances, i.e. spatial imbalance, scale imbalance, class imbalance and objective imbalance, in object detection based on the CNN greatly inhibit the optimization of detection performance.

Originality/value

This research can not only enrich the means of daily traffic monitoring but also be used for enemy intelligence reconnaissance in wartime.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 June 2017

Zhoufeng Liu, Lei Yan, Chunlei Li, Yan Dong and Guangshuai Gao

The purpose of this paper is to find an efficient fabric defect detection algorithm by means of exploring the sparsity characteristics of main local binary pattern (MLBP…

Abstract

Purpose

The purpose of this paper is to find an efficient fabric defect detection algorithm by means of exploring the sparsity characteristics of main local binary pattern (MLBP) extracted from the original fabric texture.

Design/methodology/approach

In the proposed algorithm, original LBP features are extracted from the fabric texture to be detected, and MLBP are selected by occurrence probability. Second, a dictionary is established with MLBP atoms which can sparsely represent all the LBP. Then, the value of the gray-scale difference between gray level of neighborhood pixels and the central pixel, and the mean of the difference which has the same MLBP feature are calculated. And then, the defect-contained image is reconstructed as normal texture image. Finally, the residual is calculated between reconstructed and original images, and a simple threshold segmentation method can divide the residual image, and the defective region is detected.

Findings

The experiment result shows that the fabric texture can be more efficiently reconstructed, and the proposed method achieves better defect detection performance. Moreover, it offers empirical insights about how to exploit the sparsity of one certain feature, e.g. LBP.

Research limitations/implications

Because of the selected research approach, the results may lack generalizability in chambray. Therefore, researchers are encouraged to test the proposed propositions further.

Originality/value

In this paper, a novel fabric defect detection method which extracts the sparsity of MLBP features is proposed.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 June 2022

Yasser Alharbi

This strategy significantly reduces the computational overhead and storage overhead required when using the kernel density estimation method to calculate the abnormal evaluation…

Abstract

Purpose

This strategy significantly reduces the computational overhead and storage overhead required when using the kernel density estimation method to calculate the abnormal evaluation value of the test sample.

Design/methodology/approach

To effectively deal with the security threats of botnets to the home and personal Internet of Things (IoT), especially for the objective problem of insufficient resources for anomaly detection in the home environment, a novel kernel density estimation-based federated learning-based lightweight Internet of Things anomaly traffic detection based on nuclear density estimation (KDE-LIATD) method. First, the KDE-LIATD method uses Gaussian kernel density estimation method to estimate every normal sample in the training set. The eigenvalue probability density function of the dimensional feature and the corresponding probability density; then, a feature selection algorithm based on kernel density estimation, obtained features that make outstanding contributions to anomaly detection, thereby reducing the feature dimension while improving the accuracy of anomaly detection; finally, the anomaly evaluation value of the test sample is calculated by the cubic spine interpolation method and anomaly detection is performed.

Findings

The simulation experiment results show that the proposed KDE-LIATD method is relatively strong in the detection of abnormal traffic for heterogeneous IoT devices.

Originality/value

With its robustness and compatibility, it can effectively detect abnormal traffic of household and personal IoT botnets.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 14 September 2022

Mythili Boopathi, Meena Chavan, Jeneetha Jebanazer J. and Sanjay Nakharu Prasad Kumar

The Denial of Service (DoS) attack is a category of intrusion that devours various services and resources of the organization by the dispersal of unusable traffic, so that…

Abstract

Purpose

The Denial of Service (DoS) attack is a category of intrusion that devours various services and resources of the organization by the dispersal of unusable traffic, so that reliable users are not capable of getting benefit from the services. In general, the DoS attackers preserve their independence by collaborating several victim machines and following authentic network traffic, which makes it more complex to detect the attack. Thus, these issues and demerits faced by existing DoS attack recognition schemes in cloud are specified as a major challenge to inventing a new attack recognition method.

Design/methodology/approach

This paper aims to detect DoS attack detection scheme, termed as sine cosine anti coronavirus optimization (SCACVO)-driven deep maxout network (DMN). The recorded log file is considered in this method for the attack detection process. Significant features are chosen based on Pearson correlation in the feature selection phase. The over sampling scheme is applied in the data augmentation phase, and then the attack detection is done using DMN. The DMN is trained by the SCACVO algorithm, which is formed by combining sine cosine optimization and anti-corona virus optimization techniques.

Findings

The SCACVO-based DMN offers maximum testing accuracy, true positive rate and true negative rate of 0.9412, 0.9541 and 0.9178, respectively.

Originality/value

The DoS attack detection using the proposed model is accurate and improves the effectiveness of the detection.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of over 16000