Search results

1 – 10 of 55
Article
Publication date: 1 September 2000

Marc Rouff and Mohammed Alaoui

This article presents the 2D computation of the non‐linear dynamics of magnetic domain walls motion in ferromagnetic material such as crystalline, like Fe‐Si, in formulation H

Abstract

This article presents the 2D computation of the non‐linear dynamics of magnetic domain walls motion in ferromagnetic material such as crystalline, like Fe‐Si, in formulation H, with interactions between walls, and bulk magnetic induction. These terms have important contributions to ferromagnetic losses in high exciting magnetic fields, and are usually neglected. The dynamic trajectories of magnetic domain walls are given as non‐linear coupled ordinary differential time equations. Our simulations use the Ck spline approach, which allows many algebraic facilities in algorithms and in boundary conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 May 2023

Marek Hreczka, Roman Kolano, Aleksandra Kolano-Burian, Wojciech Burlikowski and Janusz Hetmańczyk

The purpose of this paper is to verify results related to losses in the core of a brushless DC prototype motor, obtained using its computer FE models, by experimental tests on…

Abstract

Purpose

The purpose of this paper is to verify results related to losses in the core of a brushless DC prototype motor, obtained using its computer FE models, by experimental tests on manufactured machines. The paper focuses on the comparison of losses in the core of a machine with a classical stator core made of an iron–silicon material (Fe–Si) and a new one made of a modern METGLAS material.

Design/methodology/approach

Computer models of the prototype motors were created using FEM. The designed machines were manufactured, and experimental tests were performed. To achieve high frequencies in rotating magnetic fields, motors with a stator to rotor pole ratio of 9/12 were built. Twin rotor approach was applied, as two identical rotors were built along the two geometrically identical stators made of different core materials.

Findings

Experimental studies have shown the superiority of the METGLAS material over the classical Fe–Si material. Material parameters were measured directly on the prepared cores as library data used in the simulation may be incorrect due to technological processes during core production, which was also verified. Problems related to twin rotor approach have been identified. Solution to the problem has been suggested. Necessity of 3D FEM modelling was identified.

Originality/value

The main source of originality is that METGLAS material used in the prototype machines was developed and manufactured by the authors themselves. Original approach to core parameter evaluation based on simplified methodology has been suggested. Another original part is a simplified methodology applied to loss measurement during no-load test.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 July 2022

Amar Tiourguiouine, Cristian Demian, Raphael Romary, Mehdi Zmirli and Philippe Bernard

This paper aims to present the principle of virtual air gap inductance and the design of a voltage regulation device based on this principle. The authors provide a comprehensive…

Abstract

Purpose

This paper aims to present the principle of virtual air gap inductance and the design of a voltage regulation device based on this principle. The authors provide a comprehensive analysis of this specific application that consists of locally saturating the magnetic circuit of the voltage regulator to modify its global properties. This saturation is created by a direct current flowing in a small auxiliary coil inserted in the specific area of the magnetic circuit to saturate this zone.

Design/methodology/approach

Analytical calculation and finite elements simulations are used to optimize the device for a specific application tied to the supply of electrical ovens in metallurgic usage. Experimental results are presented at the end of the paper.

Findings

The experimental results presented in this paper are in concordance with the analytical calculation and with the finite element simulations for different operation points. The difficulty of the study of the virtual air gap comes mainly from the nonlinearity of the phenomena because the principle is based on a local and controllable saturation of the magnetic circuit.

Originality/value

The originality of the paper concerns the introduction of virtual air gap principle in a specific industrial application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 August 2018

Valentin Ionita, Lucian Petrescu and Emil Cazacu

The electrical machines connected to modern electric power grids are non-sinusoidal excited, and their augmented losses, including iron losses, limit their working…

Abstract

Purpose

The electrical machines connected to modern electric power grids are non-sinusoidal excited, and their augmented losses, including iron losses, limit their working characteristics. This paper aims to propose a prediction method for iron losses in non-oriented grains (NO) FeSi sheets under non-sinusoidal voltage, involving an inverse classical Preisach hysteresis model and the time-integration of each loss component.

Design/methodology/approach

The magnetic history management in inverse Preisach model is optimized and a numerical Everett function is identified from measured symmetrical hysteresis cycles. The experimental data for sinusoidal waveforms obtained by a single sheet tester were also used to identify the parameters involved in Bertotti’ losses separation method. The non-sinusoidal magnetic induction waveform, corresponding to a measured voltage in an industrial electrical grid, was the input for Preisach model, the output magnetic field being accurately computed. The hysteresis, classical and excess losses are calculated by time-integration and the total losses are compared with those obtained for sinusoidal excitation.

Findings

The proposed method allows to estimate the iron losses for non-sinusoidal magnetic induction, using carefully identified parameters of FeSi NO sheets, using experimental data from sinusoidal regimes.

Originality/value

The method accuracy is assured by using a numerical Everett function, a variable Preisach grid step (adapted for the high non-linearity of FeSi sheets) and high-order fitting polynomials for the microscopic parameters involved in the excess loss estimation. The procedure allows a better design of magnetic cores and an improved estimation of the electric machine derating for non-sinusoidal voltages.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 June 2023

Guilherme Tolentino, Guillaume Parent, Olivier Ninet, Mathieu Rossi, Jean Vianei Leite and Jonathan Blaszkowski

The horizontal rotational single-sheet tester (RSST) suffers from weaknesses such as the reduced size of test samples, measurement disturbances due to magnetic flux leakage and…

25

Abstract

Purpose

The horizontal rotational single-sheet tester (RSST) suffers from weaknesses such as the reduced size of test samples, measurement disturbances due to magnetic flux leakage and nonhomogeneity of field in the measurement area. Although the vertical RSST allows to overcome the first two aforementioned drawbacks, the heterogeneity of the field in the test sample remains an issue. In addition, there is still a lack of device standardization to ensure test repeatability, as already is well established with the Epstein frame. This paper aims to investigate the influence of several parameters on the field homogeneity in the test sample.

Design/methodology/approach

A fully 3D finite element model of a vertical RSST is developed and used to perform a sensibility study on several geometrical parameters.

Findings

The influence of several parameters on the field homogeneity in the test sample, such as the geometrical dimensions of the yokes, the presence or not of holes drilled inside the test sample for B-coil placement as well as the size of the H-coils and B-coils, is addressed.

Originality/value

It is expected that this study will contribute to the optimization and standardization vertical RSSTs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 November 2010

A. Belahcen, E. Dlala, K. Fonteyn and M. Belkasim

The purpose of this paper is to find out how to model iron losses in electrical machines accurately and efficiently.

Abstract

Purpose

The purpose of this paper is to find out how to model iron losses in electrical machines accurately and efficiently.

Design/methodology/approach

The starting point was a previously developed vector hysteresis model that was designed and incorporated into the 2D time‐stepping finite‐element (FE) simulation of induction machines. The developed approach here is a decoupling between the vector hysteresis model and the 2D FE model of the machine. The huge time consumption of the incorporated hysteresis model required some new approach to make the model computationally efficient. This is dealt with through an a posteriori use of the vector hysteresis model.

Findings

In this research, it was found that the vector hysteresis model, although used in an a posteriori scheme is able to accurately predict the iron losses as far as these losses are small enough not to affect the other operation characteristics of the machine.

Research limitations/implications

The research methods reported in this paper deal mainly with induction machines. The methods should be applied for transient operations of the induction machines as well as for other types of machines. The fact that the iron losses do not affect very much the operation characteristics of the machine is based on the fact that the air gap field plays a major role in these machines. The method cannot be applied to other magnetic devices where the iron losses are the main loss component.

Originality/value

The paper is of practical value for designers of electrical machines, who use FE programs. The methods presented here allow them to use a different FE package to simulate the machine and own routines (based on the presented methods) to predict the iron losses without loss of accuracy and in a reasonably short time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 June 2011

M. Jariyaboon, P. Møller, R.E. Dunin‐Borkowski and R. Ambat

The purpose of this investigation is to understand the structure of trapped intermetallics particles and localized composition changes in the anodized anodic oxide film on AA1050…

Abstract

Purpose

The purpose of this investigation is to understand the structure of trapped intermetallics particles and localized composition changes in the anodized anodic oxide film on AA1050 aluminium substrates.

Design/methodology/approach

The morphology and composition of Fe‐containing intermetallic particles incorporated into the anodic oxide films on industrially pure aluminium (AA1050, 99.5 per cent) has been investigated. AA1050 aluminium was anodized in a 100 ml/l sulphuric acid bath with an applied voltage of 14 V at 20°C ±2°C for 10 or 120 min. The anodic film subsequently was analyzed using focused ion beam‐scanning electron microscopy (FIB‐SEM), SEM, and EDX.

Findings

The intermetallic particles in the substrate material consisted of Fe or both Fe and Si with two different structures: irregular and round shaped. FIB‐SEM cross‐sectioned images revealed that the irregular‐shaped particles were embedded in the anodic oxide film as a thin strip structure and located near the top surface of the film, whereas the round‐shaped particles were trapped in the film with a spherical structure, but partially dissolved and were located throughout the thickness of the anodic film. The Fe/Si ratio of the intermetallic particles decreased after anodizing.

Originality/value

This paper shows that dual beam FIB‐SEM seems to be an easy, less time consuming and useful method to characterize the cross‐sectioned intermetallic particles incorporated in anodic film on aluminium.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 September 2023

Amrit Raj Paul, Manidipto Mukherjee and Mohit Kumar Sahu

The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This…

Abstract

Purpose

The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This study also aims to analyse the metallographic properties of the SS–Cu and Al–Cu interfaces and their mechanical properties.

Design/methodology/approach

The study used transitional deposition of SS–Al material over each other by incorporating Cu as interlayer between the two. The scanning electron microscope analysis, energy dispersive X-ray analysis, X-ray diffractometer analysis, tensile testing and micro-hardness measurement were performed to investigate the interface characteristics and mechanical properties of the SS–Al transitional wall.

Findings

The study discovered that the WA-DED process with a Cu interlayer worked well for the deposition of SS–Al transitional walls. The formation of solid solutions of Fe–Cu and Fe–Si was observed at the SS–Cu interface rather than intermetallic compounds (IMCs), according to the metallographic analysis. On the other hand, three different IMCs were formed at the Al–Cu interface, namely, Al–Cu, Al2Cu and Al4Cu9. The study also observed the formation of a lamellar structure of Al and Al2Cu at the hypereutectic phase. The mechanical testing revealed that the Al–Cu interface failed without significant deformation, i.e. < 4.73%, indicating the brittleness of the interface.

Originality/value

The study identified the formation of HCP–Fe at the SS–Cu interface, which has not been previously reported in additive manufacturing literature. Furthermore, the study observed the formation of a lamellar structure of Al and Al2Cu phase at the hypereutectic phase, which has not been previously reported in SS–Al transitional wall deposition.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 May 2009

Jean V. Leite, Abdelkader Benabou and Nelson Sadowski

Although the original Jiles‐Atherton (J‐A) hysteresis model is able to represent a wide range of major hysteresis loops, in particular those of soft magnetic materials, it can…

1187

Abstract

Purpose

Although the original Jiles‐Atherton (J‐A) hysteresis model is able to represent a wide range of major hysteresis loops, in particular those of soft magnetic materials, it can produces non‐physical minor loops with its classical equations. The purpose of this paper is to show a modification in the J‐A hysteresis model in order to improve the minor and inner loops representation. The proposed technique allows the J‐A model representing non‐centred minor loops with accuracy as well as improving the symmetric inner loops representation.

Design/methodology/approach

Only the irreversible magnetization component is slightly modified keeping unchanged the other model equations and the model simplicity. The high‐variation rate of the irreversible magnetization, which causes the non‐physical behaviour of minor loops, is limited by introducing a new physical parameter linked to the losses. Contrarily to other modifications of the original model found in the literature, the previously knowledge of the magnetic field waveform is not needed in this case.

Findings

The modified hysteresis model is validated by comparison with experimental results. A good agreement is observed between calculations and measurements. The modified model retains the low‐computational effort and numerical simplicity of the original one.

Originality/value

This paper shows that a classical scalar hysteresis model can be suitably used to take into account the minor loops behaviour and be included in a finite element code. The methodology is useful for the design and analysis of electromagnetic devices under distorted flux patterns.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 55