Search results

1 – 10 of 104
Article
Publication date: 29 March 2024

Min Wan, Mou Chen and Mihai Lungu

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty…

Abstract

Purpose

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty, external disturbances and sensor faults, using the prescribed performance method.

Design/methodology/approach

To ensure that the tracking error satisfies the prescribed performance, the authors adopt an error transformation function method. A control scheme based on the neural network and high-order disturbance observer is designed to guarantee the boundedness of the closed-loop system. A simulation is performed to prove the validity of the control scheme.

Findings

The developed adaptive fault-tolerant control method makes the system with sensor fault realize tracking control. The error transformation function method can effectively handle the prescribed performance requirements. Sensor fault can be regarded as a type of system uncertainty. The uncertainty can be approximated accurately using neural networks. A high-order disturbance observer can effectively suppress compound disturbances.

Originality/value

The tracking performance requirements of unmanned autonomous helicopter system are considered in the design of sensor fault-tolerant control. The inequality constraint that the output tracking error must satisfy is transformed into an unconstrained problem by introducing an error transformation function. The fault state of the velocity sensor is considered as the system uncertainty, and a neural network is used to approach the total uncertainty. Neural network estimation errors and external disturbances are treated as compound disturbances, and a high-order disturbance observer is constructed to compensate for them.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 April 2022

Shrabani Sahu and Sasmita Behera

The wind turbine (WT) is a complex system subjected to wind disturbances. Because the aerodynamics is nonlinear, the control is thus challenging. For the variation of wind speed…

Abstract

Purpose

The wind turbine (WT) is a complex system subjected to wind disturbances. Because the aerodynamics is nonlinear, the control is thus challenging. For the variation of wind speed when rated power is delivered at rated wind speed, the power is limited to the rate by the pitching of the blades of the turbine. This paper aims to address pitch control with the WT benchmark model. The possible use of appropriate adaptive controller design that modifies the control action automatically identifying any change in system parameters is explored.

Design/methodology/approach

To deal with pitch control problem when wind speed exceeds the rated wind speed of the WT, six digital self-tuning controller (STC) with different structures such as proportional integral (PI), proportional derivative (PD), Dahlin’s, pole placement, deadbeat and Takahashi has been taken herein. The system model is identified as a second-order autoregressive exogenous (ARX) model by three techniques for comparison: recursive least square method (RLS), RLS with exponential forgetting and RLS with adaptive directional forgetting identification methods. A comparative study of three identification methods, six adaptive controllers with the conventional PI controller and sliding mode controller (SMC), are shown.

Findings

As per the results, the best improvement in control of the output power by pitching in full load region of benchmark model is achieved by self-tuning PD controller based on RLS with adaptive directional forgetting method. The adaptive control design has a future in WT control applications.

Originality/value

A comparative study of identification methods, six adaptive controllers with the conventional PI controller and SMC, are shown here. As per the results, the best improvement in control of the output power by pitching in the full load region of the benchmark model has been achieved by self-tuning PD controller. The best identification method or the system is RLS with an adaptive directional forgetting method. Instead of a step input response design for the controllers, the controller design has been carried out for the stochastic wind and the performance is adjudged by the normalized sum of square tracking error (NSSE) index. The validation of the proposed self-tuning PD controller has been shown in comparison to the conventional controller with Monte-Carlo analysis to handle model parameter alteration and erroneous measurement issues.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 September 2023

Zhifang Wang, Quanzhen Huang and Jianguo Yu

In this paper, the authors take an amorphous flattened air-ground wireless self-assembling network system as the research object and focus on solving the wireless self-assembling…

Abstract

Purpose

In this paper, the authors take an amorphous flattened air-ground wireless self-assembling network system as the research object and focus on solving the wireless self-assembling network topology instability problem caused by unknown control communication faults during the operation of this system.

Design/methodology/approach

In the paper, the authors propose a neural network-based direct robust adaptive non-fragile fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network integrated system.

Findings

The simulation results show that the system eventually tends to be asymptotically stable, and the estimation error asymptotically tends to zero with the feedback adjustment of the designed controller. The system as a whole has good fault tolerance performance and autonomous learning approximation performance. The experimental results show that the wireless self-assembled network topology has good stability performance and can change flexibly and adaptively with scene changes. The stability performance of the wireless self-assembled network topology is improved by 66.7% at maximum.

Research limitations/implications

The research results may lack generalisability because of the chosen research approach. Therefore, researchers are encouraged to test the proposed propositions further.

Originality/value

This paper designs a direct, robust, non-fragile adaptive neural network fault-tolerant controller based on the Lyapunov stability principle and neural network learning capability. By directly optimizing the feedback matrix K to approximate the robust fault-tolerant correction factor, the neural network adaptive adjustment factor enables the system as a whole to resist unknown control and communication failures during operation, thus achieving the goal of stable wireless self-assembled network topology.

Article
Publication date: 7 March 2023

Preeti Godabole and Girish Bhole

The main purpose of the paper is timing analysis of mixed critical applications on the multicore system to identify an efficient task scheduling mechanism to achieve three main…

Abstract

Purpose

The main purpose of the paper is timing analysis of mixed critical applications on the multicore system to identify an efficient task scheduling mechanism to achieve three main objectives improving schedulability, achieving reliability and minimizing the number of cores used. The rise in transient faults in embedded systems due to the use of low-cost processors has led to the use of fault-tolerant scheduling and mapping techniques.

Design/methodology/approach

The paper opted for a simulation-based study. The simulation of mixed critical applications, like air traffic control systems and synthetic workloads, is carried out using a litmus-real time testbed on an Ubuntu machine. The heuristic algorithms for task allocation based on utilization factors and task criticalities are proposed for partitioned approaches with multiple objectives.

Findings

Both partitioned earliest deadline first (EDF) with the utilization-based heuristic and EDF-virtual deadline (VD) with a criticality-based heuristic for allocation works well, as it schedules the air traffic system with a 98% success ratio (SR) using only three processor cores with transient faults being handled by the active backup of the tasks. With synthetic task loads, the proposed criticality-based heuristic works well with EDF-VD, as the SR is 94%. The validation of the proposed heuristic is done with a global and partitioned approach of scheduling, considering active backups to make the system reliable. There is an improvement in SR by 11% as compared to the global approach and a 17% improvement in comparison with the partitioned fixed-priority approach with only three processor cores being used.

Research limitations/implications

The simulations of mixed critical tasks are carried out on a real-time kernel based on Linux and are generalizable in Linux-based environments.

Practical implications

The rise in transient faults in embedded systems due to the use of low-cost processors has led to the use of fault-tolerant scheduling and mapping techniques.

Originality/value

This paper fulfills an identified need to have multi-objective task scheduling in a mixed critical system. The timing analysis helps to identify performance risks and assess alternative architectures used to achieve reliability in terms of transient faults.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 30 May 2023

Yixuan Xue, Ziyang Zhen, Zhibing Zhang, Teng Cao and Tiancai Wan

Accurate glide path tracking is vital to the automatic carrier landing task of unmanned aerial vehicle (UAV). The purpose of this paper is to develop a reliable flight controller…

Abstract

Purpose

Accurate glide path tracking is vital to the automatic carrier landing task of unmanned aerial vehicle (UAV). The purpose of this paper is to develop a reliable flight controller that can simultaneously deal with external disturbance, structure fault and actuator fault.

Design/methodology/approach

The automatic carrier landing task is resolved into the glide path tracking problem and attitude tracking problem. The disturbance observer-based adaptive sliding mode control scheme is proposed for system stabilization, disturbance rejection and fault tolerance.

Findings

Both the Lyapunov method and exemplary simulations can prove that the disturbance estimation error and the attitude tracking error converge in finite time in the presence of external disturbances and various faults.

Practical implications

The presented algorithm is testified by a UAV automatic carrier landing simulation, which shows the potential of practical usage.

Originality/value

The barrier function is introduced to adaptively update both the sliding mode observer gain and sliding mode controller gain, so that the sliding mode surface could converge to a predefined region without overestimation. The proposed flight controller ensures a secure carrier landing task.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 June 2022

Himanshukumar R. Patel and Vipul A. Shah

In recent times, fuzzy logic is gaining more and more attention, and this is because of the capability of understanding the functioning of the system as per human knowledge-based…

Abstract

Purpose

In recent times, fuzzy logic is gaining more and more attention, and this is because of the capability of understanding the functioning of the system as per human knowledge-based system. The main contribution of the work is dynamically adapting the important parameters throughout the execution of the flower pollination algorithm (FPA) using concepts of fuzzy logic. By adapting the main parameters of the metaheuristics, the performance and accuracy of the metaheuristic have been improving in a varied range of applications.

Design/methodology/approach

The fuzzy logic-based parameter adaptation in the FPA is proposed. In addition, type-2 fuzzy logic is used to design fuzzy inference system for dynamic parameter adaptation in metaheuristics, which can help in eliminating uncertainty and hence offers an attractive improvement in dynamic parameter adaption in metaheuristic method, and, in reality, the effectiveness of the interval type-2 fuzzy inference system (IT2 FIS) has shown to provide improved results as matched to type-1 fuzzy inference system (T1 FIS) in some latest work.

Findings

One case study is considered for testing the proposed approach in a fault tolerant control problem without faults and with partial loss of effectiveness of main actuator fault with abrupt and incipient nature. For comparison between the type-1 fuzzy FPA and interval type-2 fuzzy FPA is presented using statistical analysis which validates the advantages of the interval type-2 fuzzy FPA. The statistical Z-test is presented for comparison of efficiency between two fuzzy variants of the FPA optimization method.

Originality/value

The main contribution of the work is a dynamical adaptation of the important parameters throughout the execution of the flower pollination optimization algorithm using concepts of type-2 fuzzy logic. By adapting the main parameters of the metaheuristics, the performance and accuracy of the metaheuristic have been improving in a varied range of applications.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 August 2023

Raghavendra Rao N.S. and Chitra A.

The purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).

Abstract

Purpose

The purpose of this study is to propose an extended reliability method for an industrial motor drive by integrating the physics of failure (PoF).

Design/methodology/approach

Industrial motor drive systems (IMDS) are currently expected to perform beyond the desired operating conditions to meet the demand. The PoF of the subsystem affects its reliability under such harsh operating circumstances. It is crucial to estimate reliability by integrating PoF, which helps in understanding its impact and to develop a fault-tolerant design, particularly in such an integrated drive system. An integrated PoF extended reliability method for industrial drive system is proposed to address this issue. In research, the numerical failure rate of each component of industrial drive is obtained first with the help of the MIL-HDBK-217 military handbook. Furthermore, the mathematically deduced proposed approach is modeled in the GoldSim Monte Carlo reliability workbench.

Findings

From the results, for a 15% rise in integrated PoF, the reliability and availability of the entire IMDS dropped by 23%, resulting in an impact on mean time to failure (MTTF).

Originality/value

The integrated PoF of the motor and motor controller affects industrial drive reliability, which falls to 0.18 with the least MTTF (2.27 years); whose overall reliability of industrial drive drops to 0.06 if it is additionally integrated with communication protocol.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 February 2024

Gerasimos G. Rigatos, Pierluigi Siano, Mohammed S. Al-Numay, Bilal Sari and Masoud Abbaszadeh

The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet…

Abstract

Purpose

The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet synchronous motors and five-phase asynchronous induction motors (IMs) are among the types of multiphase motors one can consider for the traction system of electric vehicles (EVs). By distributing the required power in a large number of phases, the power load of each individual phase is reduced. The cumulative rates of power in multiphase machines can be raised without stressing the connected converters. Multiphase motors are also fault tolerant because such machines remain functional even if failures affect certain phases.

Design/methodology/approach

A novel nonlinear optimal control approach has been developed for five-phase IMs. The dynamic model of the five-phase IM undergoes approximate linearization using Taylor series expansion and the computation of the associated Jacobian matrices. The linearization takes place at each sampling instance. For the linearized model of the motor, an H-infinity feedback controller is designed. This controller achieves the solution of the optimal control problem under model uncertainty and disturbances.

Findings

To select the feedback gains of the nonlinear optimal (H-infinity) controller, an algebraic Riccati equation has to be solved repetitively at each time-step of the control method. The global stability properties of the control loop are demonstrated through Lyapunov analysis. Under moderate conditions, the global asymptotic stability properties of the control scheme are proven. The proposed nonlinear optimal control method achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs.

Research limitations/implications

Comparing to other nonlinear control methods that one could have considered for five-phase IMs, the presented nonlinear optimal (H-infinity) control approach avoids complicated state-space model transformations, is of proven global stability and its use does not require the model of the motor to be brought into a specific state-space form. The nonlinear optimal control method has clear implementation stages and moderate computational effort.

Practical implications

In the transportation sector, there is progressive transition to EVs. The use of five-phase IMs in EVs exhibits specific advantages, by achieving a more balanced distribution of power in the multiple phases of the motor and by providing fault tolerance. The study’s nonlinear optimal control method for five-phase IMs enables high performance for such motors and their efficient use in the traction system of EVs.

Social implications

Nonlinear optimal control for five-phase IMs supports the deployment of their use in EVs. Therefore, it contributes to the net-zero objective that aims at eliminating the emission of harmful exhaust gases coming from human activities. Most known manufacturers of vehicles have shifted to the production of all-electric cars. The study’s findings can optimize the traction system of EVs thus also contributing to the growth of the EV industry.

Originality/value

The proposed nonlinear optimal control method is novel comparing to past attempts for solving the optimal control problem for nonlinear dynamical systems. It uses a novel approach for selecting the linearization points and a new Riccati equation for computing the feedback gains of the controller. The nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 May 2023

Fan Yang, Hao Chen and Shuai Xu

Quantitative reliability analysis can effectively identify the time the driving system needs to be maintained. Then, the potential safety problems can be found, and some…

Abstract

Purpose

Quantitative reliability analysis can effectively identify the time the driving system needs to be maintained. Then, the potential safety problems can be found, and some catastrophic failures can be effectively prevented. Therefore, this paper aims to evaluate the reliability of the switched reluctance generator (SRG) driving system.

Design/methodology/approach

In this paper, a method considering different thermal stresses and fault tolerance capacity is proposed to analyze the reliability of an SRG. A full-bridge power converter (FBPC) instead of the asymmetric half-bridge power converter (AHBPC) is adopted to drive the SRG system. First, the primary fault modes of the SRG system are introduced, and a fault criterion is proposed to determine whether the system fails. Second, the thermal circuit model of the converter is established to quickly and accurately obtain the junction temperature of the devices. At last, the Markov models of different levels are established to evaluate the reliability of the system.

Findings

The results show that the two-level Markov model is the most suitable when compared to the static model and the one-level Markov model.

Originality/value

The driving system of SRG will be more reliable after the reliability of the system is evaluated by the Markov model. At the same time, an FBPC is adopted to drive the SRG. The FBPCs have the advantages of fewer switching devices, higher integration and lower cost. The proposed driving strategy of the FBPC avoids the current reversal and the generation of dead zone time, which has the advantage of reliable operation. In addition, a precise thermal circuit model of the FBPC is proposed, and the junction temperature of each device can be obtained, respectively.

Details

Microelectronics International, vol. 40 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 104