Search results

1 – 10 of 140
Open Access
Article
Publication date: 18 January 2022

Sara Antomarioni, Filippo Emanuele Ciarapica and Maurizio Bevilacqua

The research approach is based on the concept that a failure event is rarely random and is often generated by a chain of previous events connected by a sort of domino effect…

1000

Abstract

Purpose

The research approach is based on the concept that a failure event is rarely random and is often generated by a chain of previous events connected by a sort of domino effect. Thus, the purpose of this study is the optimal selection of the components to predictively maintain on the basis of their failure probability, under budget and time constraints.

Design/methodology/approach

Assets maintenance is a major challenge for any process industry. Thanks to the development of Big Data Analytics techniques and tools, data produced by such systems can be analyzed in order to predict their behavior. Considering the asset as a social system composed of several interacting components, in this work, a framework is developed to identify the relationships between component failures and to avoid them through the predictive replacement of critical ones: such relationships are identified through the Association Rule Mining (ARM), while their interaction is studied through the Social Network Analysis (SNA).

Findings

A case example of a process industry is presented to explain and test the proposed model and to discuss its applicability. The proposed framework provides an approach to expand upon previous work in the areas of prediction of fault events and monitoring strategy of critical components.

Originality/value

The novel combined adoption of ARM and SNA is proposed to identify the hidden interaction among events and to define the nature of such interactions and communities of nodes in order to analyze local and global paths and define the most influential entities.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 26 July 2021

Weifei Hu, Tongzhou Zhang, Xiaoyu Deng, Zhenyu Liu and Jianrong Tan

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant…

11761

Abstract

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant attraction in both industry and academia, there is no systematic understanding of DT from its development history to its different concepts and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT history, different definitions and models, and six types of key enabling technologies. The review also provides a comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in four categorized engineering fields, including aerospace engineering, tunneling and underground engineering, wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key technologies and specific applications are extracted for each DT category in this paper. A comprehensive survey of the DT references reveals the following findings: (1) The majority of existing DT models only involve one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the environmental coupling, which results in the inaccurate representation of the virtual components in existing DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in categorized engineering applications. In addition, the review discusses the key challenges and provides future work for constructing DTs of complex engineering systems.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 10 May 2022

Jindong Song, Jingbao Zhu and Shanyou Li

Using the strong motion data of K-net in Japan, the continuous magnitude prediction method based on support vector machine (SVM) was studied.

Abstract

Purpose

Using the strong motion data of K-net in Japan, the continuous magnitude prediction method based on support vector machine (SVM) was studied.

Design/methodology/approach

In the range of 0.5–10.0 s after the P-wave arrival, the prediction time window was established at an interval of 0.5 s. 12 P-wave characteristic parameters were selected as the model input parameters to construct the earthquake early warning (EEW) magnitude prediction model (SVM-HRM) for high-speed railway based on SVM.

Findings

The magnitude prediction results of the SVM-HRM model were compared with the traditional magnitude prediction model and the high-speed railway EEW current norm. Results show that at the 3.0 s time window, the magnitude prediction error of the SVM-HRM model is obviously smaller than that of the traditional τc method and Pd method. The overestimation of small earthquakes is obviously improved, and the construction of the model is not affected by epicenter distance, so it has generalization performance. For earthquake events with the magnitude range of 3–5, the single station realization rate of the SVM-HRM model reaches 95% at 0.5 s after the arrival of P-wave, which is better than the first alarm realization rate norm required by “The Test Method of EEW and Monitoring System for High-Speed Railway.” For earthquake events with magnitudes ranging from 3 to 5, 5 to 7 and 7 to 8, the single station realization rate of the SVM-HRM model is at 0.5 s, 1.5 s and 0.5 s after the P-wave arrival, respectively, which is better than the realization rate norm of multiple stations.

Originality/value

At the latest, 1.5 s after the P-wave arrival, the SVM-HRM model can issue the first earthquake alarm that meets the norm of magnitude prediction realization rate, which meets the accuracy and continuity requirements of high-speed railway EEW magnitude prediction.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 7 December 2020

Jing Wang, Yinghan Wang, Yichuan Peng and Jian John Lu

The operation safety of the high-speed railway has been widely concerned. Due to the joint influence of the environment, equipment, personnel and other factors, accidents are…

Abstract

Purpose

The operation safety of the high-speed railway has been widely concerned. Due to the joint influence of the environment, equipment, personnel and other factors, accidents are inevitable in the operation process. However, few studies focused on identifying contributing factors affecting the severity of high-speed railway accidents because of the difficulty in obtaining field data. This study aims to investigate the impact factors affecting the severity of the general high-speed railway.

Design/methodology/approach

A total of 14 potential factors were examined from 475 data. The severity level is categorized into four levels by delay time and the number of subsequent trains that are affected by the accident. The partial proportional odds model was constructed to relax the constraint of the parallel line assumption.

Findings

The results show that 10 factors are found to significantly affect accident severity. Moreover, the factors including automation train protection (ATP) system fault, platform screen door and train door fault, traction converter fault and railway clearance intrusion by objects have an effect on reducing the severity level. On the contrary, the accidents caused by objects hanging on the catenary, pantograph fault, passenger misconducting or sudden illness, personnel intrusion of railway clearance, driving on heavy rain or snow and train collision against objects tend to be more severe.

Originality/value

The research results are very useful for mitigating the consequences of high-speed rail accidents.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 28 September 2022

Yuxin Zhang, Wei Dong, Junyan Wang, Congcong Che and Lefei Li

Through this research study, the authors found that digital thread has made significant progress in the life cycle management of the US Air Force. The authors hope that by…

1537

Abstract

Purpose

Through this research study, the authors found that digital thread has made significant progress in the life cycle management of the US Air Force. The authors hope that by reviewing similar studies in the aerospace field, the meaning of digital thread can be summarized and applied to a wider range of fields. In addition, theoretically, the definition of digital twin and digital thread are not unified. The authors hope that the comparison of digital thread and digital twin will better enable scholars to distinguish between the two concepts. Besides, the authors are also looking forward that more people will realize the significance of digital thread and carry out future research.

Design/methodology/approach

Complete research about digital thread and the relevant concept of the digital twin is conducted. First, by searching in Google Scholar with the keyword “digital thread”, the authors filter results and save literature with high relevance to digital thread. The authors also track these papers’ references for more paper of digital thread and digital twin. After removing the duplicate and low-relevance literature, 72 digital thread-related literature studies are saved and further analyzed from the perspective of time development, application field and research directions.

Findings

Digital thread application in industries other than the aviation manufacturing industry is still relatively few, and the research on the application of digital thread in real industrial scenarios is mainly at the stage of framework design and design-side decision optimization. In addition, the digital thread needs a new management mechanism and organizational structure to realize landing. The new management mechanism and the process can adapt to the whole life cycle management process based on the digital thread, manage the data security and data update, and promote the digital thread to play a better effect on the organizational management.

Practical implications

Based on a review of digital thread, future research directions and usage suggestions are given. The fault diagnosis of high-speed train bogie as an example shows the effectiveness of the method and also partially demonstrates the advantages and effects brought by the digital thread connecting the data models at various stages.

Originality/value

This paper first investigates and analyzes the theoretical connotation and research progress of digital thread and gives a complete definition of digital thread from the perspective of the combination of digital thread and digital twins. Next, the research process of digital thread is reviewed, and the application fields, research directions and achievements in recent years are summarized. Finally, taking the fault diagnosis of high-speed train bogie as an example partially demonstrates the advantages and effects brought by the digital thread connecting the data models at various stages.

Details

Digital Transformation and Society, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0761

Keywords

Open Access
Article
Publication date: 14 September 2021

Cris Koutsougeras, Mohammad Saadeh and Ahmad Fayed

This modeling facilitates the determination of control responses (or possibly reconfiguration) upon such events and the identification of which segments of the pipeline can…

Abstract

Purpose

This modeling facilitates the determination of control responses (or possibly reconfiguration) upon such events and the identification of which segments of the pipeline can continue to function uninterrupted. Based on this modeling, an algorithm is presented to implement the control responses and to establish this determination. In this work, the authors propose using Message Queuing Telemetry Transport (MQTT), which is an integrated method to perform the system-wide control based on message exchanging among local node controllers (agents) and the global controller (broker).

Design/methodology/approach

Complex manufacturing lines in industrial plants are designed to accomplish an overall task in an incremental mode. This typically consists of a sequence of smaller tasks organized as cascaded processing nodes with local controls, which must be coordinated and aided by a system-wide (global) controller. This work presents a logic modeling technique for such pipelines and a method for using its logic to determine the consequent effects of events where a node halts/fails on the overall operation.

Findings

The method uses a protocol for establishing communication of node events and the algorithm to determine the consequences of node events in order to produce global control directives, which are communicated back to node controllers over MQTT. The algorithm is simulated using a complex manufacturing line with arbitrary events to illustrate the sequence of events and the agents–broker message exchanging.

Originality/value

This approach (MQTT) is a relatively new concept in Cyber-Physical Systems. The proposed example of feed-forward is not new; however, for illustration purposes, it was suggested that a feed-forward be used. Future works will consider practical examples that are at the core of the manufacturing processes.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 7 June 2023

Ping Li, Yi Liu and Sai Shao

This paper aims to provide top-level design and basic platform for intelligent application in China high-speed railway.

Abstract

Purpose

This paper aims to provide top-level design and basic platform for intelligent application in China high-speed railway.

Design/methodology/approach

Based on the analysis for the future development trends of world railway, combined with the actual development needs in China high-speed railway, The definition and scientific connotation of intelligent high-speed railway (IHSR) are given at first, and then the system architecture of IHSR are outlined, including 1 basic platform, 3 business sectors, 10 business fields, and 18 innovative applications. At last, a basic platform with cloud edge integration for IHSR is designed.

Findings

The rationality, feasibility and implementability of the system architecture of IHSR have been verified on and applied to the Beijing–Zhangjiakou high-speed railway, providing important support for the construction and operation of the world’s first IHSR.

Originality/value

This paper systematically gives the definition and connotation of the IHSR and put forward the system architecture of IHSR for first time. It will play the most important role in the design, construction and operation of IHSR.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 21 November 2023

Ping Li, Rui Xue, Sai Shao, Yuhao Zhu and Yi Liu

In recent years, railway systems worldwide have faced challenges such as the modernization of engineering projects, efficient management of intelligent digital railway equipment…

Abstract

Purpose

In recent years, railway systems worldwide have faced challenges such as the modernization of engineering projects, efficient management of intelligent digital railway equipment, rapid growth in passenger and freight transport demands, customized transport services and ubiquitous transport safety. The transformation toward intelligent digital transformation in railways has emerged as an effective response to the formidable challenges confronting the railway industry, thereby becoming an inevitable global trend in railway development.

Design/methodology/approach

This paper, therefore, conducts a comprehensive analysis of the current state of global railway intelligent digital transformation, focusing on the characteristics and applications of intelligent digital transformation technology. It summarizes and analyzes relevant technologies and applicable scenarios in the realm of railway intelligent digital transformation, theoretically elucidating the development process of global railway intelligent digital transformation and, in practice, providing guidance and empirical examples for railway intelligence and digital transformation.

Findings

Digital and intelligent technologies follow a wave-like pattern of continuous iterative evolution, progressing from the early stages, to a period of increasing attention and popularity, then to a phase of declining interest, followed by a resurgence and ultimately reaching a mature stage.

Originality/value

The results offer reference and guidance to fully leverage the opportunities presented by the latest wave of the digitalization revolution, accelerate the overall upgrade of the railway industry and promote global collaborative development in railway intelligent digital transformation.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 17 November 2023

Peiman Tavakoli, Ibrahim Yitmen, Habib Sadri and Afshin Taheri

The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin…

Abstract

Purpose

The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin smart and sustainable built environment (DT) for predictive asset management (PAM) in building facilities.

Design/methodology/approach

Qualitative research data were collected through a comprehensive scoping review of secondary sources. Additionally, primary data were gathered through interviews with industry specialists. The analysis of the data served as the basis for developing blockchain-based DT data provenance models and scenarios. A case study involving a conference room in an office building in Stockholm was conducted to assess the proposed data provenance model. The implementation utilized the Remix Ethereum platform and Sepolia testnet.

Findings

Based on the analysis of results, a data provenance model on blockchain-based DT which ensures the reliability and trustworthiness of data used in PAM processes was developed. This was achieved by providing a transparent and immutable record of data origin, ownership and lineage.

Practical implications

The proposed model enables decentralized applications (DApps) to publish real-time data obtained from dynamic operations and maintenance processes, enhancing the reliability and effectiveness of data for PAM.

Originality/value

The research presents a data provenance model on a blockchain-based DT, specifically tailored to PAM in building facilities. The proposed model enhances decision-making processes related to PAM by ensuring data reliability and trustworthiness and providing valuable insights for specialists and stakeholders interested in the application of blockchain technology in asset management and data provenance.

Details

Smart and Sustainable Built Environment, vol. 13 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 8 February 2022

Oche A. Egaji, Ikram Asghar, Mark G. Griffiths and David Hinton

This study aims to evaluate the usability of the augmented reality-based Evoke Education System (EES) to improve service operations in educational settings. The EES uses an…

1409

Abstract

Purpose

This study aims to evaluate the usability of the augmented reality-based Evoke Education System (EES) to improve service operations in educational settings. The EES uses an animated character (Moe) to interact with children in a classroom by reproducing their teacher's movements and speech.

Design/methodology/approach

This study uses a quantitative approach for the system usability evaluation. The ESS was evaluated by 71 children aged 6–8 years old, from two primary schools. After interacting with the EES, they completed a system usability questionnaire and participated in a knowledge acquisition test.

Findings

The knowledge acquisition test undertaken on the initial day showed statistically significant improvements for children taught with the EES, compared to children taught through traditional teaching approaches. However, the retest nine days later was not statistically significant (as only one school participated) due to low power. This study used confirmatory factor analysis (CFA), resulting in the identification of five essential factors (likeability, interactiveness, retention, effectiveness/attractiveness and satisfaction) that contribute to the EES's usability. The comparison with existing literature shows that these factors are consistent with the definition of system usability provided by the International Organization for Standardization and current academic literature in this field.

Research limitations/implications

The findings presented in this study are based on the data from only two schools. The research can be extended by involving children from a greater number of schools. Mixed methods and qualitative research approaches can be used for future research in this area to generalise the results.

Originality/value

This study proposes an innovative augmented reality-based education system to help teachers deliver their key messages to the children in a fun way that can potentially increase their knowledge retention.

1 – 10 of 140